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Abstract—In real-world image processing applications, the
data is high dimensional but the amount of high-quality data
needed to train the model is very limited. In this paper, we
demonstrate applicability of a recently presented method for
dictionary learning from incomplete data, the so-called Iterative
Thresholding and K residual Means for Masked data, to deal
with high-dimensional data in an efficient way. In particular,
the proposed algorithm incorporates a corruption model directly
at the dictionary learning stage, also enabling reconstruction of
the low-rank component again from corrupted signals. These
modifications circumvent some difficulties associated with the
efficient dictionary learning procedure in the presence of limited
or incomplete data.

We choose an image inpainting problem as a guiding example,
and further propose a procedure for automatic detection and
reconstruction of the low-rank component from incomplete
data and adaptive parameter selection for the sparse image
reconstruction. We benchmark the efficacy and efficiency of our
algorithm in terms of computing time and accuracy on colour,
3D medical, and hyperspectral images by comparing it to its
dictionary learning counterparts.

I. INTRODUCTION

In signal and image processing, the most notable recent
advances are based on the observation that natural (often high-
dimensional) signals can be well approximated as a linear
combination of a small (sparse) number of elementary signals,
the so-called atoms, from a prescribed basis or frame, called
dictionary. Formally, representing each signal as a column
vector yn ∈ Rd and arranging normalised atoms as columns of
the dictionary Φ = (φ1, . . . , φK) ∈ Rd×K , the sparse model
is described as

yn = Φxn and ‖xn‖0 � d. (1)

In this expression, xn ∈ RK is the sparse representation of
yn and the function ‖ · ‖0 counts the number of non-zero
entries of its argument. The problem of finding a sparse vector
xn in (1) is referred to as sparse coding and is an NP-hard
optimisation problem for overcomplete dictionaries, i.e., when
d < K. In practice, greedy algorithms and convex relaxation
alternatives are successfully employed to solve this problem.
Thus, the main focus of several communities has recently been
on automating choice of the dictionary Φ. Now it is evident
that even though some analytically-defined dictionaries such
as Wavelet or Overcomplete Discrete Cosine Transform are

fast and easy to implement, learning the dictionary from the
given data for a specific task gives state-of-the-art results in
many signal and image processing applications. There exist
a multitude of dictionary learning algorithms to choose from,
see [1]–[3], for instance.

Though successful, the dictionary learning problem has
traditionally been restricted to problems when a large number
of clean high-quality signals are available for training. In
addition, due to the computational complexity of the problem,
the majority of the learning algorithms have been restricted
to work with relatively small signals. Recent works [4]
tried to address the latter issue by observing that learned
dictionaries have a certain sparse structure, which can be
efficiently utilised. These novel algorithms are capable of
handling signals at the dimension of several thousands, and
learn on millions of data signals. At the same time, aspects
related to data availability for the model training has mostly
been ignored in the literature.

We tried to circumvent the problem of data availability and
proposed an algorithm for learning dictionaries from incom-
plete/masked training data, the so-called Iterative Thresholding
and K residual Means for Masked data (ITKrMM) [5]. Being
an extension of the theoretically-justified and numerically effi-
cient Iterative Thresholding and K residual Means algorithm,
[6], the ITKrMM algorithm incorporates a signal corruption
model into the dictionary learning phase and, additionally,
allows to recover a low-rank component, again from incom-
plete data. Specifically, the corrupted data is described using
the concept of mask M , given by a binary matrix, that is
multiplied to the signal y entry-wise and zeros in M indicates
the removed/missing data pixel.

In the current paper, we demonstrate the applicability of
the ITKrMM algorithm to deal with high-dimensional data,
e.g., colour and 3D images. We also introduce procedures
for automatic selection of the low-rank component size and
adaptive parameter choice for the sparse coding in image
inpainting tasks, leading to state-of-the-art results in terms of
the reconstruction quality and computational complexity.

The rest of the paper is organised as follows: Section II
contains a brief description of the ITKrMM algorithm. An
adaptation of the algorithm to deal with high-dimensional
data as well as various simulation results that demonstrate the
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effectiveness of the proposed algorithm for colour, 3D, and
hyperspectral image inpainting are presented in Section III.
Finally, we conclude the paper with a brief description of the
contribution and open questions for future work.

We start with providing a standard notation used in the
paper: for a matrix A, we denote its (conjugate) transpose by
A?. We denote by P (A) the orthogonal projection onto the
column span of A, i.e. P (A) = A(A?A)−1A? and by Q(A)
the orthogonal projection onto the orthogonal complement of
the column span of A, i.e. Q(A) = Id−P (A), where Id is the
identity matrix in Rd.The restriction of the dictionary Φ to the
atoms indexed by I is denoted by ΦI , i.e. ΦI = (φi1 , . . . , φiS ),
ij ∈ I .

II. ITKRMM ALGORITHM

The ITKrMM algorithm learns a dictionary Φ from cor-
rupted signals Mnyn under the assumption that the signals yn
are sparse in the dictionary Φ and allows to recover the low-
rank component Γ again from corrupted data. The algorithm
belongs to the class of alternating projection algorithms, which
alternate between sparsely approximating the signals in the
current version of the dictionary and updating the dictionary
based on the sparse approximations. For sparse approxima-
tion, ITKrMM uses thresholding and for the atoms update
– residual averages and as such has the advantage of being
computationally light and sequential.

We start with providing some intuition behind the ITKrMM
algorithm before presenting the algorithm itself and refer to [5]
for a detailed description of the algorithm. Given the corrupted
signal My, its proper dictionary representation is obtained,
based on the following considerations: firstly, as the signal’s
energy could be distorted by the mask, ‖My‖2 ≤ ‖y‖2,
we cannot assume that the corrupted signal is normalised.
Moreover, the corrupted signal is not sparse in the dictionary
Φ but rather in its corrupted version MnΦ, which is indeed
not a dictionary as its columns are in general non-normalised,
again because of M . Thus, the proper My representation is

Mnyn =
∑
i∈In:

Mnφi 6=0

xi‖Mnφi‖2 ·
Mnφi
‖Mnφi‖2

,

where In denotes the support. To recover In via thresholding,
we check the S−largest inner products between the corrupted
signal and the renormalised corrupted atoms,

Itn = arg max
I:|I|=S

∑
i∈I:

Mnφi 6=0

|〈Mnφi,Mnyn〉|
‖Mnφi‖2

= arg max
I:|I|=S

∑
i∈I
‖P (Mnφi)Mnyn‖2.

Given the generating support Itn, the dictionary update rule
is performed by calculating for each atom residual means
over the corrupted signals and then by rescaling each atom
according to the number of times it has been observed.

Finally, as most of the natural signals are not perfectly
sparse but rather modelled as the orthogonal sum of a low-rank

and a sparse component, recovery of the low-rank component
has to be addressed. Otherwise, we risk to end up with an
ill-conditioned and coherent dictionary, where most atoms
are distorted towards the low-rank component. For clean
signals the removal of the reconstructed low-rank component
Γ̃ is quite straightforward, but the situation becomes more
complicated for the corrupted signals as the mask destroys
the orthogonality between the dictionary and the low-rank
component. To overcome this difficulty, we incorporate into
the dictionary update rule the projection on the estimated
low-rank component and ensure that the output dictionary is
orthogonal to the recovered component.

These considerations lead to the iterative algorithm, pre-
sented below. Interpreting all signals as 1-sparse in a dictionary
of one atom, we can adjust the ITKrMM algorithm for the low-
rank component recovery. In particular, a step with the sparse
support recovery is omitted as majority of the training signals
are expected to contain the one new atom. Additionally, we
iteratively learn the low-rank component atom by atom.

Algorithm II.1 (ITKrMM - one iteration). Given an estimate
of the low-rank component Γ̃, an input dictionary Ψ with
Ψ?Γ̃ = 0, a sparsity level S and N corrupted training signals
yMn = (Mnyn,Mn) do:
• For all n set Mnỹn = Q(MnΓ̃)Mnyn.
• For all n find

Itn = arg max
I:|I|=S

∑
i∈I:Mnφi 6=0

|〈Mnφi,Mnỹn〉|
‖Mnφi‖2

.
• For all k calculate

ψ̄k =
∑

n:k∈Itn

[
Id − P (Mn(Γ̃,ΨItn

)) + P (Mnψk)
]
Mnỹn×

× sign(〈ψk,Mnỹn〉) and Wk =
∑

n:k∈Itn

Mn.

• Set ¯̄ψk = Q(Γ̃)W †k ψ̄k and output

Ψ̄ = ( ¯̄ψ1/‖ ¯̄ψ1‖2, . . . , ¯̄ψK/‖ ¯̄ψK‖2).

III. IMAGE INPAINTING WITH ITKRMM

Image inpainting is the process of filling in missing infor-
mation in images. The areas with missing information can
be either single pixels such as in noisy digital photos, larger
continuous regions stemming from scratches, or other objects
like text or date stamps on an image. Image inpainting has
become an active field of research in the mathematical and
engineering communities, and the methods and approaches
vary greatly, especially for 2D problems. The dictionary-based
inpainting can be formulated as recovering sparse coefficients
xI such that every masked patch is sparse in the masked
dictionary

My ≈MΦIxI for |I| ≤ S. (2)

Then the reconstructed patch is given as ỹ ≈ Φx̃I with x̃I ≈
xI . Our goal is to evaluate the robustness and simplicity of
the ITKrMM algorithm for dictionary-based inpainting, and
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we therefore do not compare our method with state-of-the-
art methods for image inpainting, but compare instead against
other dictionary-based inpainting algorithms like the weighted
KSVD (wKSVD) [8].

In [5] we demonstrated that the ITKrMM achieved opti-
mal performance for grayscale image inpainting in standard
benchmark tests. We here expand on the previous method
and introduce several improvements, also for application to
colour, 3D images, and hyperspectral images. Our previous
results indicated that the size of the low-rank component
played an important role in the performance of the ITKrMM
algorithm. In particular, we observed that for grayscale images
with low corruption levels, the low-rank component of higher
size led to better inpainting results. To account for this
adaptively, we propose an automatic determination of the
low-rank component size. Since the ITKrMM algorithm is
iterative, it provides the possibility to determine the size of
the low-rank component, specifically, by evaluating the ratio
between the energies captured by the last low-rank atom γl,
i.e.

∑
n ‖P (Mnγl)Mnyn‖22 to the signal energy expected to

be captured by a dictionary atom 1
K

∑
n ‖Mnyn‖22. As soon

as the ratio between these energies stabilises, we stop adding
low-rank atoms and turn to the dictionary learning step.

Assuming we have a learned dictionary, we still need to
approximate the sparse coefficients xI . In [5] we introduced
the masked version of the Orthogonal Matching Pursuit (OMP)
to solve (2), which is adapted towards damaged dictionaries by
including additional normalisation step. In the masked OMP,
the number of non-zero components in xI was fixed a priori,
depending on the corruption nature. As the sparsity level might
vary from patch to patch, depending on the local image struc-
ture and corruptions, an adaptive selection of the sparsity level
for each patch could lead to a better reconstruction quality
and also be more time efficient, esp. for smooth/homogenous
images. Thus, we introduce an adaptive masked OMP where
the sparsity level is chosen according to the specified deviation
ε in the representation, i.e. ‖My −MΦxI‖2 ≤ ε such that
|I| ≤ Smax, where Smax depends on the patch dimension. In
[8] the authors argued that the error-based stopping criteria in
OMP for colour image inpainting should be substituted by a
fixed number of OMP iterations, or prescribed sparsity level
to speed up the process. On the contrary, we observe that the
masked OMP equipped with the error-stopping rule leads to
better and faster results as the ITKrMM-learned dictionaries
are in general flat and, thus, on average patches have sparser
representation compared to an a priori prescribed value.

A. Colour image inpainting

In Figure 1 we present a classical example of text removal,
which has been used in several previous studies with reports
of state-of-the art performance of 32.45 dB using the wKSVD
algorithm [8]. Using the ITKrMM algorithm with automatic
choice of the low-rank component size L and adaptive masked
OMP, we achieve the performance of 39.68 dB with patches
of size 10 × 10 × 3 and the redundant dictionary of size
K = 600 − L. For a fair comparison, it is worthwhile to

mention that the sparsity level for wKSVD-based inpainting
is also chosen adaptively, leading to a better performance of
35.12 dB than it was reported in the original paper [8]. Let
us now describe our setup for dictionary-based inpainting in
more details.
Data: We consider colour images from a standard image
database with 30, 50 or 70% of randomly erased pixels. A
mask is applied to the whole image such that missing pixels
may not be the same in each colour channel. To speed up
computation, all images are rescaled to have a standard height
of 256 pixels, keeping the original aspect ratio. We then extract
all possible patches of size p × p × 3 (containing the RGB
layers) pixels from the corrupted image and the corresponding
mask. We consider patches of size p = 8 and p = 10
to compare performance of the algorithms. The vectorised
corrupted patch/mask pairs are then given to the dictionary
learning algorithms.
Dictionary & low-rank component: The ITKrMM-learned
dictionaries are of size K = 2d − L atoms, where d = 3p2

is the dimension of the patches and the size of the low-rank
component L is chosen automatically according to the iterative
procedure described above and we stop as soon as the ratio
between the energies does not decrease by more than 20%
from the previous iteration. wKSVD-learned dictionaries are
of size K = 2d, where the first atom is constant, i.e. φ1 = c,
as suggested in the original paper, this corresponds to L = 1
in the ITKrMM case.
Initialisation & sparsity level: The same initial dictionary,
consisting of orthonormal random vectors, are used for both
algorithms. The dictionaries are trained using S = p − L
coefficients per atom, with L = 1 for wKSVD. We run
20 iterations for the low-rank component learning and all
available patch/mask pairs; whereas for the dictionary learning
we run 80 iterations on all available patch/mask pairs for both
algorithms. Note that wKSVD-based algorithms are suggested
to be pre-learned on an image database and then adapted
to image patches at hand [8]. In our case, we skipped this
step, but still observe a good performance of the algorithm.
The procedure for automatic L choice confirms our previous
observations that the image nature and the corruption level
determines the size of the low-rank component. L = 3
was chosen for more textured images like Mandrill and low
corruption levels, whereas the algorithm picked up L = 1 or
L = 2 for 70% corruptions and/or smooth images like Castle.

Dictionary-based inpainting: We first reconstruct every
damaged image patch using the adaptive masked OMP with
Smax = d/3 and ε = 10−6 as the stopping criteria. Afterwards
we reconstruct the full image by averaging every pixel over
all patches in which it was contained.

Comparison/Error: We measure the success of recovery
for the different pairs of dictionaries by the peak signal-to-
noise ratio (PSNR) between the original image Y and the
recovered version Ỹ . For Y, Ỹ both images of size d1 × d2
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the PSNR is defined as

PSNR in dB = log10

(
(maxi,j Y (i, j)−mini,j Y (i, j))2

1
d1d2

∑
i,j(Y (i, j)− Ỹ (i, j))

)
.

For each corruption level, the results in Table I are averaged
over 5 runs, each with a different mask and initialisation, to
account for the variability of the PSNR for different mask
realisations.

Similarly, as observed for grayscale images in our pre-
vious paper, Table I shows that both algorithms perform
about equally well, although the ITKrMM performs slightly
better for more textured images (Barbara, Mandrill) and
smaller corruption level in general, whereas for the higher
corruptions wKSVD is slightly better. A plausible explanation
is that the ITKrMM algorithm learns better more textured
(high frequency) atoms, while wKSVD produces smooth (low
frequency) atoms. For higher corruption levels, the learned
ITKrMM dictionaries are simply noisy versions of their
counterparts learned from less corrupted data, whereas the
wKSVD dictionaries mainly contain noisy versions of the
smooth atoms from their 30% counterparts and not many
recognisable copies of high-frequency atoms. At the same
time, we have not observed any differences in colour recovery
for both algorithms.

Comparing compute time of both algorithms, we observe
that ITKrMM is about 10 times faster than wKSVD for patch
size of 8 × 8 and about 13 times faster for patch size of
10× 101. In general the computational efficiency of ITKrMM
over wKSVD becomes more pronounced for larger d resp. K.
We expect that the ITKrMM run time may be further signifi-
cantly improved by parallelisation of the ITKrMM algorithm
and learning the dictionary on a pre-selected subset of the
representative signals. For the former, we expect a close-to
linear speedup with the number of processors, whereas the
latter issue we intend to investigate in future work.

Corr. Algorithm Barb. Castle House Man. Pepp.

ra
nd

.
30

%

Noisy Im. 11.72 11.01 9.85 10.64 11.18
wKSVD 39.24 42.56 40.93 33.48 39.53
ITKrMM 40.40 42.18 41.63 34.92 40.55

ra
nd

.
50

%

Noisy Im. 9.49 8.77 7.63 8.41 8.96
wKSVD 35.70 37.46 38.18 29.73 36.27
ITKrMM 36.09 36.52 38.33 30.71 36.17

ra
nd

.
70

%

Noisy Im. 7.45 6.73 5.58 6.36 6.91
wKSVD 30.20 28.97 31.81 25.37 29.49
ITKrMM 29.22 27.77 31.74 24.51 28.74

TABLE I: Comparison of the PSNR (in dB) for inpainting of
Barbara, Castle, House, Mandrill, and Peppers, images with various
corruption levels based on dictionaries learned with wKSVD and
ITKrMM on all available corrupted image patches of size 8 × 8.
Note that the size of low-rank component as well as coefficients in
masked OMP are adaptively selected in the ITKrMM algorithm.

1as observed by running both algorithms in unoptimised form on the
UIBK computing cluster consisting of 45 nodes with 20 Intel Xeon (Haswell)
computing cores each, all nodes equipped with 64GB RAM except for two
nodes with 512GB RAM

B. Inpainting of 3D images

To evaluate the performance of the ITKrMM algorithm for
3D image inpainting, we used synthetic cerebral MRI volumes
available on BrainWeb [9] with 80% random missing voxels.
As most of the settings for the ITKrMM-based inpainting
are kept similar to the ones presented above, we describe
briefly some introduced changes. From the MRI volume of size
217×181×181 we extract patches of size 8×8×8 from each
8th slice in z direction. These pre-selected patches are chosen
to maintain computational requirements reasonable. We learn
the dictionary of size K = 2d−L, where d = p3 = 512, using
signals with the maximum allowed corruption level of 80%.
For two realisations of the random mask, we run 20 iterations
for the low-rank component learning and 80 iterations for
dictionary learning on extracted patch/mask pairs. Figure 2
shows that even with such high corruption level, we can
still see incredibly faint details in the restored anatomical
structures.

C. Inpainting of hypersspectral images

Finally, we illustrate a good performance of the ITKrMM
algorithm for spatial recovery of hyperspectral data from Mars
Observer [10]. Missing data are a standard problem in as-
tronomy. Combined with its inherent high-dimensionality and
complicated geometry, a data recovery/inpainting algorithm
has to be fast and efficient. Figure 3 shows the recovery per-
formance for varying degrees of missing voxels. The accurate
recovery in combination with low computational requirements
make the algorithm suitable for large scale data analyses such
as commonly encountered in cosmology.

IV. CONCLUSION

We have demonstrated the robustness of the ITKrMM algo-
rithm for colour, 3D, and hyperspectral image inpainting. By
introducing adaptivity in selection of the low-rank component
and the sparsity level in the sparsity coding procedure, we
further improve the performance and efficiency. The direct
comparison with the state-of-the art algorithm wKSVD il-
lustrated the noticeable improvements in terms of required
computational resources and similar recovery results. The
ITKrMM algorithm reproducing the results for grayscale and
colour images is available at the Karin Schnass webpage.

Beyond the theoretical justification of the ITKrMM algo-
rithm, we intend to introduce the concept of iterative dictionary
relearning with adaptive selection of the training signals. This
procedure could be beneficial for image inpainting with large
amount of missing data as, for instance, frequently encoun-
tered in cosmic data. Potential advantage of our approach is
that we do not need additional clean data for dictionary pre-
learning and, thus, the technique could be applied in various
applications, where the amount and the quality of the data pose
a big challenge. Another interesting future direction is related
to the adaptive pre-selection of the signals for the dictionary
learning, which is highly relevant and desirable in the case of
high-dimensional data.
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(a) image with text (b) wKSVD: PSNR is 35.12 dB (c) ITKrMM: PSNR is 39.68 dB

Fig. 1: Inpainting example: Text removal

Fig. 2: Inpainting example for 3D images: A sagittal (x, y) slice of the original synthetic MRI volume from BrainWeb [9] (left), its corrupted
version with 80% randomly missing voxels (middle), and inpainted results with ITKrMM dictionary (right)
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Fig. 3: Inpainting example for hyperspectral astronomical image: A spatial recovery of the Mars Express observation with ITKrMM dictionary
(left) from its corrupted version with 50% randomly missing voxels (middle), and ITKrMM recovery performance for varying degrees of
missing voxels: PSNR values for the ITKrMM-recovered images (blue solid line) and the corrupted image (red dotted line) (right)
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