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Abstract—Like other divergences, Jeffrey’s divergence (JD) is
used for change detection, for model comparison, etc. Recently,
a great deal of interest has been paid to this symmetric version
of the Kullback-Leibler (KL) divergence. This led to analytical
expressions of the JD between autoregressive (AR) processes,
moving-average (MA) processes, either noise-free or disturbed
by additive white noises, as well as ARMA processes. In this
paper, we propose to study the JD between processes that
are defined as sums of complex-valued sinusoidal processes
disturbed by additive white noises. We show that the JD
tends to a stationary behavior when the number of variates
becomes large. The derivative of the JD becomes a constant
that depends on the parameters defining the processes. The
convergence speed towards this stationary regime depends on
the differences between the normalized angular frequencies. The
smaller the difference, the slower the convergence. This result
can be obtained by interpreting some steps to compute the JD as
orthogonal projections. Some examples illustrate the theoretical
analysis.

Index Terms—Jeffrey’s divergence, Kullback-Leibler diver-
gence, change detection, model comparison.

I. INTRODUCTION

In various applications from seismic to biomedical signal
processing, change detection algorithms can be useful. The
problem is often to decide whether a change has occurred
in a set of data. For this purpose, a reference set of data
is compared with a second one which is defined by using a
sliding window. In other cases, it can be of interest to compare
different sets of data that are not necessarily recorded in the
same situations, i.e. at the same time and/or by the same
sensors and/or for the same patients in biomedical applications,
etc. This is for instance the case to detect pathology from EEG
or ECG and to analyze the properties of sea clutter in different
areas when dealing with radar processing.
Among the solutions that can be considered, spectrum com-
parison can be done, based on the log spectral distance or
the Itakura-Saito distance. In these cases, the periodogram or
the pseudo-spectra deduced from Capon’s method or subspace
methods such as MUSIC can be used.
As an alternative, Kullback-Leibler (KL) divergence, Pearson
divergence (PD) or the relative Pearson’s divergence consist in
comparing the distributions of the set of data. Several authors
have analyzed these divergences for stochastic processes and
have used them in various applications. See for instance
[1], [2] and [3]. The estimations of the KL and the PD
between two probability distributions that are not necessarily
Gaussian from sets of data have been also studied. Instead
of estimating the densities from the sets of data, the density

ratio is directly estimated. For the KL case, this leads to
the KL importance estimation procedure (KLIEP) and the
Gaussian mixture KLIEP (GM-KLIEP) [4], [5], as well as
the M-estimator-based approach [6]. The symmetric Kullback-
Leibler (KL) divergence, known as Jeffrey’s divergence (JD),
has been computed between the distributions of the successive
samples of two time-varying AR (TVAR) processes [7]. This
method has been also used to classify more than two AR
processes in different subsets [8]. The analytical expressions
of the JD between 1st-order MA processes, that can be real or
complex, noise-free or disturbed by additive white Gaussian
noises, has also been studied in [9]. Finally, comparing AR
and MA processes using the JD has been proposed in [10].
In this paper, we present a complementary study that aims at
comparing two processes defined as sums of complex expo-
nentials disturbed by uncorrelated additive white noises. Our
purpose is to analyze the influence of the process parameters
on the JD and to give some clues for the interpretation. We will
see that the JD computed for a set of k successive samples is
not necessarily enough to conclude. Its evolution with respect
to k as well as its asymptotic increment are useful.
This paper is organized as follows: in sections II, we briefly
recall the definition and the expression of the JD. Then, the
JD between the sum of complex-valued sinusoidal processes
disturbed by additive white noises is addressed. In section III,
theoretical results are illustrated by some examples.
In the following, Ik is the identity matrix of size k and Tr
the trace of a matrix. The upperscripts T and H denote
the transpose and the hermitian. xk1:k2 = (xk1 , ..., xk2) is the
collection of samples from time k1 to k2.

II. JEFFREY’S DIVERGENCE BETWEEN SUMS OF COMPLEX
EXPONENTIALS DISTURBED BY ADDITIVE NOISES

A. Definition and advantages of the Jeffrey’s divergence

The Kullback-Leibler (KL) divergence between the joint
distributions of k successive values of two random processes,
denoted as p1(x1:k) and p2(x1:k), can be evaluated to study
the dissimilarities between the processes [11].

KLk
(1,2) =

∫
x1:k

p1(x1:k)ln

(
p1(x1:k)

p2(x1:k)

)
dx1:k (1)

When the processes are both Gaussian and real with means
µ1,k and µ2,k and covariance matrices Q1,k and Q2,k, it can
be easily shown, by substituting p1(x1:k) and p2(x1:k) with
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the expressions of Gaussian multivariate distributions, that the
KL satisfies [12]:

KLk
(1,2) =

1

2

[
Tr(Q2,k

−1Q1,k)− k − ln
detQ1,k

detQ2,k
(2)

+ (µ2,k − µ1,k)TQ2,k
−1(µ2,k − µ1,k)

]
.

When dealing with zero-mean processes, (2) reduces1 to:

KLk
(1,2) ∝ 1

2

[
Tr(Q2,k

−1Q1,k)− k − ln
detQ1,k

detQ2,k

]
. (3)

However, the KL is not symmetric. Therefore, the Jeffrey
divergence can be preferred. It satisfies:

JD
(1,2)
k =

1

2
(KL

(1,2)
k +KL

(2,1)
k ), (4)

Using (3) and (4) leads to the following expression of the JD:

JDk
(1,2) ∝ −k +

1

2

[
Tr(Q2,k

−1Q1,k) + Tr(Q1,k
−1Q2,k)

]
.

(5)
This no longer involves a logarithm but depends on the k ×
k covariance matrices of the processes. For instance, the JD
between two real Gaussian zero-mean noises with variances
σl

2 with l = 1, 2 is equal to:

JDk
(1,2) = −k +

k

2

(
σ1

2

σ22
+
σ2

2

σ12

)
. (6)

The increment of the JD is hence equal to
−1 + 1

2

(
σ1

2

σ2
2 + σ2

2

σ1
2

)
. In the following, let us study the

JD between sums of complex exponentials disturbed by
additive white noises.

B. Statistical properties of the sums of sinusoids disturbed by
additive white noises

Let us assume that the processes under study are Gaussian
zero-mean and defined by their covariance matrices which can
be expressed as follows, with l = 1, 2:

Ql,k = Sl,kPlS
H
l,k + σl

2Ik. (7)

where Sl,k is a matrix of size k × Ml, with k the number
of successive samples that are considered and Ml the number
of complex exponentials with normalized angular frequencies
{θl,m}m=1,...,Ml

. For each process, these latter are in the
interval [−π, π[ and are different from each other. However,
the two processes can have common normalized angular
frequencies. In addition, Pl is a diagonal matrix of size
Ml × Ml whose main diagonal is defined by the variances
{γl,m}m=1,...,Ml

of the random zero-mean magnitudes of the
complex exponentials. Finally, one has:

Sl,k =
[
S1
l,k . . . SMl

l,k

]
(8)

=


1 . . . 1

ejθl,1 . . . ejθl,Ml
...

...
ej(k−1)θl,1 . . . ej(k−1)θl,Ml


1In the complex case, T is replaced by H and 1

2
disappears in (2). In the

following, ∝ is used instead of =.

At this stage let us recall the following properties that these
vectors satisfy. They will be useful in the remainder of this
paper.

1
k

(
Sml,k

)H
Sml,k = 1

1
k

(
Sml,k

)H
Snl,k = 1

k

∑k−1
t=0 e

j(θl,m−θl,n)t

=
sin(

k(θl,m−θl,n)

2 )

ksin(
(θl,m−θl,n)

2 )
e
j
(

(k−1)(θl,m−θl,n)

2

)
(9)

As lim
k→+∞

| sin(
k(θl,m−θl,n)

2

ksin(
(θl,m−θl,n)

2

)| = 0 for any set of normalized

angular frequencies satisfying θl,n 6= θl,m in the interval
[−π, π[, (9) becomes:

1
k

(
Sml,k

)H
Sml,k = 1

lim
k→+∞

1
k

(
Sml,k

)H
Snl,k = 0

(10)

The same properties hold when we consider normalized angu-
lar frequencies of both processes. The convergence speed to
tend to this limit when k increases depends on the difference
between the normalized angular frequencies. The smaller the
difference, the slower the convergence.

Given (7) and using the matrix inversion lemma 2, one has
for l = 1, 2:

Ql,k
−1 =

1

σl2

(
Ik − Sl,k

(
σl

2Pl
−1 + SHl,kSl,k

)−1
SHl,k

)
(11)

In the next section, using the definitions and properties of
the JD and the processes under study, we propose to study
Tr(Q2,k

−1Q1,k).

C. Expression of the trace Tr(Q2,k
−1Q1,k)

Given (7) and (11), after developing, Tr(Q2,k
−1Q1,k) can

be expressed as the sum of four terms denoted as A(2,1),
B(2,1), C(2,1) and D(2,1). The order of the upperscripts corre-
sponds to the order of the matrices in the trace to be computed.
Let us start expressing the first one. Since Tr(FG) = Tr(GF )
where F and G are non square matrices but FG and GF are
square matrices, one has:

A(2,1) =
1

σ22
Tr
(
S1,kP1S

H
1,k

)
=

1

σ22
Tr
(
SH1,kS1,kP1

)
(12)

=
k

σ22

M1∑
m=1

γ1,m =
k

σ22
Tr(P1)

Then, one has:

B(2,1) =
1

σ22
Tr
(
σ1

2Ik
)

=
σ1

2

σ22
k (13)

and

C(2,1) = −σ1
2

σ22
Tr

(
SH2,kS2,k

(
SH2,kS2,k + σ2

2
P2
−1
)−1)

(14)

2Given the matrices A, U , C and V where A and C are
assumed to be invertible, one has: (A+ UCV )−1 = A−1 −
A−1U

(
C−1 + V A−1U

)−1
V A−1
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In (14), let us focus our attention on the matrix(
SH2,kS2,k + σ2

2
P2
−1
)−1

. By applying again the inversion
matrix lemma, one has:

(SH2,kS2,k + σ2
2
P2
−1)−1 = (SH2,kS2,k)−1

(15)

−(SH2,kS2,k)−1(σ2
−2P2 + (SH2,kS2,k)−1)−1(SH2,kS2,k)−1

Using (14) and (15) leads to:

C(2,1) = −σ1
2

σ22
Tr(IM2

) (16)

+
σ1

2

σ22
Tr((σ2

−2P2 + (SH2,kS2,k)−1)−1(SH2,kS2,k)−1)

When k increases, due to the asymptotic properties (10)
of ”orthogonality”, the second term of C(2,1) in (16) tends
to zero. Therefore, the trace C(2,1) tends to the following
expression:

lim
k→+∞

C(2,1) = −σ1
2

σ22
Tr (IM2

) = −σ1
2

σ22
M2 (17)

Depending on the normalized angular frequencies of the sec-
ond process, the convergence speed is more or less fast when k
increases. The closer the normalized angular frequencies are,
the slower the convergence speed is.

Finally, let us study the fourth term. It is defined as follows:

D(2,1) = (18)

− 1

σ22
Tr
(
SH1,kS2,k

(
σ2

2P2
−1 + SH2,kS2,k

)−1
SH2,kS1,kP1

)
In the above equation (18), let us denote:

T1/2,k = S2,k

(
σ2

2P2
−1 + SH2,kS2,k

)−1
SH2,kS1,k (19)

As we already did for C(2,1), (19) can be approximated by
using (15) as follows:

T1/2,k = S2,k(SH2,kS2,k)−1SH2,kS1,k − S2,k(SH2,kS2,k)−1×
(20)

(σ2
−2P2 + (SH2,kS2,k)−1)−1(SH2,kS2,k)−1SH2,kS1,k

= S1/2,k + U1/2,k

where:
S1/2,k = S2,k

(
SH2,kS2,k

)−1
SH2,kS1,k

U1/2,k = −S2,k(SH2,kS2,k)−1×
(σ2
−2P2 + (SH2,kS2,k)−1)−1(SH2,kS2,k)−1SH2,kS1,k

(21)
When substituting the expression (20) of T1/2,k into (18),
D(2,1) can be expressed as the sum of two traces. In the
following, we propose to evaluate both:

1) The first one is induced by S1/2,k: The matrix S1/2,k

stores the orthogonal projections of the columns of S1,k

onto the space spanned by the columns of S2,k. Given
the ”asymptotic”’ properties (10) of orthogonality when
k tends to infinity, the orthogonal projection of the mth

column Sm1,k of S1,k onto S2,k is a null column vector
except when the two processes have common normalized

angular frequencies. Indeed, if there exists n ∈ [[1,M2]]
such as θ1,m = θ2,n, this leads to:

lim
k→+∞

S2,k

(
SH2,kS2,k

)−1
SH2,kS

m
1,k = Sm1,k (22)

Therefore, lim
k→+∞

S1/2,k can be approximated by:

S1/2 = lim
k→+∞

S1/2,k ≈
[
S1
1,kδ

1
1,2 . . . SM1

1,k δ
M1
1,2

]
(23)

where δm1,2 =
M2∑
n=1

δθ1,m,θ2,n with δθ1,m,θ2,n equal to 1

when θ1,m = θ2,n and zero otherwise. In other words,
δm1,2 = 1 if both processes share the normalized angular
frequency θ1,m. Otherwise it is equal to 0.
Combining (18) and (23), this leads to:

lim
k→+∞

− 1

σ22
Tr(SH1,kS2,k(SH2,kS2,k)−1SH2,kS1,kP1) ≈

(24)

− 1

σ22
Tr
(
SH1,kS1/2P1

)
=
−k
σ22

M1∑
m=1

M2∑
n=1

γ1,mδθ1,m,θ2,n

This term is null if the processes do not have at least
one common normalized angular frequency.

2) The second one is induced by U1/2,k: When k

increases, due to the ”asymptotic orthogonality proper-
ties”’ (10), some simplifications can be done. One has:

lim
k→+∞

U1/2,k = (25)

− lim
k→+∞

1

k2
S2,k(σ2

−2P2 +
1

k
IM2)−1SH2,kS1,k

= − lim
k→+∞

σ2
2

k2
S2,kP

−1
2 SH2,kS1,k

As we aim at calculating the trace of
− 1
σ2

2Tr
(
SH1,kU1/2,kP1

)
, one has:

lim
k→+∞

1

k2
Tr
(
SH1,kS2,kP2

−1SH2,kS1,kP1

)
(26)

=

M1∑
m=1

M2∑
n=1

γ1,m
γ2,n

δθ1,m,θ2,n

Combining (12), (13), (17), (24) and (26), Tr(Q2,k
−1Q1,k)

can be expressed as follows when k tends to infinity:

Tr(Q2,k
−1Q1,k) ≈ k

σ22

M1∑
m=1

M2∑
n=1

γ1,m(1− δθ1,m,θ2,n) (27)

+ (k −M2)
σ1

2

σ22
+

M1∑
m=1

M2∑
n=1

γ1,m
γ2,n

δθ1,m,θ2,n

Remark: When the processes have the same covari-

ance matrix,
M1∑
m=1

M2∑
n=1

γ1,m
γ2,n

δθ1,m,θ2,n = M1 = M2 and

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1711



M1∑
m=1

M2∑
n=1

γ1,m(1− δθ1,m,θ2,n) = 0. In this case, (27) becomes:

Tr(Q2,k
−1Q1,k) = (k −M2)

σ1
2

σ22
+M1 = k = Tr(Ik) (28)

D. Expression of the JD

As the expression of Tr(Q1,k
−1Q2,k) when k tends to

infinity is similarly defined when the indices 1 and 2 are
switched and given (5) and (27), the JD can be approximated
when k tends to infinity as follows:

JDk
(1,2) ∝ −k +

1

2
[(k −M2)

σ1
2

σ22
+ (k −M1)

σ2
2

σ12
(29)

+ k

M1∑
m=1

M2∑
n=1

(
γ1,m
σ22

+
γ2,n
σ12

)(1− δθ1,m,θ2,n)

+

M1∑
m=1

M2∑
n=1

(
γ1,m
γ2,n

+
γ2,n
γ1,m

)
δθ1,m,θ2,n ].

The JD depends on the parameters of the processes, namely the
normalized angular frequencies of each process, the variances
of the magnitudes of each component as well as the variances
of the additive noises. The first term of the expression includes
the JD between two zero-mean white noises with variances
σ1

2 and σ2
2. When there is no complex exponentials in

both processes, the processes under study correspond to white
noises and (29) reduces to (6).
Note that the two other terms in (29) make it possible to point
out the differences between the sets of complex exponentials.

In the following subsection, let us analyze how the JD
evolves when k is incremented.
E. Analysis of the increment of the Jeffrey’s divergence

Given the expression (29) of the JD we obtained, let us now
deduce the asymptotic increment, i.e. the increment of the JD
when k tends to infinity:

∆JD = lim
k→+∞

JDk
(1,2) − JDk−1

(1,2) (30)

One has: ∆JD ∝ −1

+
1

2

[
σ1

2

σ22
+
σ2

2

σ12
+

M1∑
m=1

M2∑
n=1

(
γ1,m
σ22

+
γ2,n
σ12

)(1− δθ1,m,θ2,n)

]
(31)

The ratio of the additive-white-noise variances has an influ-
ence on the slop of the JD. In addition, when there are common
normalized angular frequencies between two processes, ∆JD
is smaller.

In the next section, we suggest illustrating the way the JD
evolves when comparing two processes.

III. ILLUSTRATIONS AND COMMENTS
A. Influence of the additive-noise variances

The parameters are the following in this first simulation:
M1 = 1, θ1,1 = −π/5, γ1,1 = 100 and σ1

2 = 1. M2 = 1,
θ2,1 = −2π/5, γ2,1 = 40 and σ2

2 = 0.5. Then, a second
simulation is done where σ22 is doubled: σ22 = 1. Finally,
a last simulation is done where σ2

2 = 2. As illustrated by
Fig. 1, the asymptotic increment is modified according to (31).

It always depends on σ1
2

σ2
2 + σ2

2

σ1
2 and may depend on the set

of ratios {γ1,mσ2
2 +

γ2,n
σ1

2 }m=1,...,M1and n=1,...,M2
.

Fig. 1: Asymptotic increment vs increment, 1st example, with three
simulations where σ2

2 is modified.

B. Convergence speed towards the stationary regime

The parameters are the following: the two processes are de-
fined as in the first example (See III.A) except that σ22 = 0.1.
Then, two other simulations are done with θ2,1 = −1.5π/5
and finally θ2,1 = −1.1π/5.

Given Fig. 2, one can notice that the JD computed from (5)
and (7) tends to be the same for the three simulations when k
increases. The main differences are located when k is small.
For this reason, we suggest computing the derivatives of these
JD. They are given in Fig. 3 where they are compared with
the asymptotic increment given in (31).

Fig. 2: JD and its approximation, 2nd example, with three simula-
tions where θ2,1 becomes closer and closer to θ1,1 = −π/5

As presented in (31) in the theoretical analysis in section
II, we can see that the asymptotic increment is here the
same for all the simulations. The only difference stands in
the convergence speed towards the stationary regime. Indeed,
given Fig. 3, the convergence of the JD derivative towards the
asymptotic increment is faster when the difference between
the normalized angular frequencies is large. The fluctuations
of the derivatives around the asymptotic increment are mainly
due to the products such as SH1,kS2,k and SH2,kS1,k that must

be computed. They correspond to values of sin(
k(θl,m−θl,n)

2 )

sin(
(θl,m−θl,n)

2

whose square is periodic with respect to k with period equal
to 2π
|θ1,n−θ2,m| .
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Fig. 3: Asymptotic increment vs increment, 2nd example with three
simulations where θ2,1 becomes closer and closer to θ1,1 = −π/5

C. A more general case

The parameters are the following: M1 = 3, θ1,1 = π/10,
θ1,2 = π/4, θ1,3 = 4π

5 , γ1,1 = 100, γ1,2 = 50, γ1,3 = 75 and
σ1

2 = 1. M2 = 3, θ2,1 = −π/10, θ2,2 = π/2 ,θ2,3 = 4π/5,
γ2,1 = 40, γ2,2 = 60, γ2,3 = 80 and σ2

2 = 0.1. Then, a
second simulation is done where θ2,2 is modified: θ2,2 = π/4.
Finally, a third simulation is presented where the normalized
angular frequencies are the same for both processes.

Fig. 4: JD and its approximation, 3rd example with three simulations
where the processes share 1, then 2 and then 3 normalized angular
frequencies

In Fig. 4 and 5, we present the evolution of the JD and
the increment over time obtained from (5) respectively. We
compare the increment (i.e. the derivative of the JD with
respect to the number of variates k) with the asymptotic
increment obtained in (31). It confirms our theoretical analysis.
In practical cases, the covariance matrices can be estimated in
the maximum likelihood sense from the data. Then, the JD
is deduced for various sizes k of the covariance matrices. In
order to make the interpretation easier, the derivative of the
JD with respect to k must be computed and plotted to analyze
the convergence speed towards the stationary regime.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we have studied the JD between two sums
of complex exponentials disturbed by additive white noises.

Fig. 5: Asymptotic increment vs increment, 3rd example with
three simulations where the processes share 1, then 2 and then 3
normalized angular frequencies

We have shown that the derivative of the JD with respect to
the number of variates k tends to be a constant. The resulting
asymptotic increment is of interest to compare the processes.
It consists of two terms: one which depends on the ratio of
the additive-white-noise variances and another which depends
on the complex-exponential magnitude variances, the noise
variances and the normalized angular frequencies. The analysis
of the convergence speed as well as the value of the asymptotic
increment have to be taken into account for the interpretation.

We are currently studying a comparison between the JD
between complex exponentials disturbed by additive noises
and the JD between two AR processes whose power spectral
densities exhibit sharp resonances.

REFERENCES

[1] L. Bombrun, N.-E. Lasmar, Y. Berthoumieu, and G. Verdoolaege,
“Multivariate texture retrieval using the SIRV representation and the
geodesic distance,” IEEE ICASSP, pp. 865–868, 2011.

[2] R. Murthy, I. Pavlidis, and P. Tsiamyrtzis, “Touchless monitoring of
breathing function,” IEEE EMBS, pp. 1196–1199, 2004.

[3] A. Schutz, L.Bombrun, Y. Berthoumieu, and M. Najim, “Centroid-
based texture classification using the generalized gamma distribution,”
EUSIPCO, pp. 1–5, 2013.

[4] M. Sugiyama, T. Suzuki, S. Nakajima, P. von Bunau, and M. Kawanabe,
“Direct importance estimation for covariate shift adapation,” Annals of
the Institute, vol. 60, n4, pp. 699–746, 2008.

[5] M. Yamada and M. Sugiyama, “Direct importance estimation with
gaussian mixture models,” IEICE Transactions on Information and
Systems, vol. E92-D, n10, pp. 2159–2162, 2009.

[6] X. Nguyen, M. J. Wainwright, and M. I. Jordan, “Estimating divergence
functionals and the likelihood ratio by convex risk minimization,” IEEE
Transactions on Information Theory, vol. 56, n11, pp. 5847–5861, 2010.

[7] C. Magnant, A. Giremus, and E. Grivel, “On computing Jeffrey’s
divergence between time-varying autoregressive models,” IEEE Signal
Processing Letters, vol. 22, issue 7, pp. 915–919, 2014.

[8] C. Magnant, A. Giremus, and E. Grivel, “Jeffreys divergence between
state models: Application to target tracking using multiple models,”
EUSIPCO, pp. 1–5, 2013.

[9] L. Legrand and E. Grivel, “Jeffrey’s divergence between moving-average
models that are real or complex, noise-free or disturbed by additive white
noises,” Elsevier Signal Processing, vol. 131, pp. 350–363, 2017.

[10] L. Legrand and E. Grivel, “Jeffrey’s divergence between moving-average
and autoregressive models,” IEEE ICASSP, 2017.

[11] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[12] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine
learning. MIT Press, 2006.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1713


