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Abstract—In this paper, we propose a maximum likelihood
estimator for received signal strength (RSS) based indoor local-
ization systems by exploiting gamma shadow fading model. In
order to investigate the validity of proposed method in a realistic
environment, we develop a testbed based on Wi-Fi technology.
Through experimental analyses, we first demonstrate the gamma
distribution is a good fit to lognormal distribution, and both
of them can sufficiently accurately characterize the empirical
RSS observations. Then, we observe that gamma distribution is
worth investigating for indoor localization compared to lognor-
mal model because it provides superior accuracy. We further
analyze the impacts of uncertainties of considered distributions’
parameters on the localization performance via simulations.

Index Terms—Positioning; received power level; gamma
shadow fading; maximum likelihood estimator; Wi-Fi

I. INTRODUCTION

Over the recent decades, localization techniques improved
considerably due to vital requirements of numerous applica-
tions towards military, industrial, medical, household and per-
sonal uses. Global navigation satellite systems (GNNS) based
positioning techniques are well-investigated for outdoor envi-
ronments. However such systems are unfavorable for dense
cities, tunnels and indoor environments since satellite signals
suffer from severe loss passing through walls and partitions. To
circumvent this shortcoming, several GNNS free localization
techniques have been actively studied with the help of radio
frequency (RF) technologies including Wi-Fi, WSN [1]–[5].
In current RF based techniques, localization are frequently
executed by utilizing measurement of received signal strength
(RSS), direction of arrival (DOA), angle of arrival (AOA), time
(difference) of arrival (T(D)OA), roundtrip-time (RTT), and
a fusion of them. There is an inherent tradeoff between the
localization accuracy and the implementation complexity of
these systems. When compared to others, RSS is an attractive
low-cost solution because of requiring no specialized hardware
and no synchronization.

The wireless channel is complicated and can be charac-
terized by several effects which include macroscopic and
microscopic fadings. In RSS based positioning systems, proper
modeling of wireless channel is the crucial challenge. To the
best of authors’ knowledge, in related literature the widely
accepted channel model is characterized by log-distance path

loss and lognormal shadow fading (i.e macroscopic fading).
Lognormal distribution for modeling the shadow fading is
in compliance with the physical justifications of the channel
[6]. Since its introduction, this model sustained its valid-
ity by many empirical studies. Subsequently, the authors of
[7] empirically proposed Gamma distribution based shadow
fading model due to provide more tractable performance
analysis. Following this, in many works focused on data-
bit level analyses, gamma mixture distribution is utilized to
characterize the shadow fading in composite models which
include macroscopic and microscopic fadings together [8], [9].
Various other shadow fading models such as inverse Gaussian
have also been considered in such composite channels [10].

In addition to the above mentioned studies, the composite
channel models for localization have also been investigated in
a few other works. In [11], a maximum likelihood (ML) based
localization method considers a composite model which con-
sists of two parts: gamma distributed microscopic fading and
lognormal distributed shadow fading. Guo et. al experimen-
tally introduced new composite model utilizing exponential
and Rayleigh distributions to consider microscopic effects as
well as exploring the validity of the model with a particle filter
in localization and tracking [12].

In this paper, inspired by [7], we propose a ML based
localization scheme utilizing the gamma shadow fading model.
In order to empirically investigate the effectiveness of the
proposed scheme, we implement a real-life experiment setup
aided by Wi-Fi technology for an indoor environment. By
utilizing empirical RSS measurements, we statistically demon-
strate that gamma distribution can be a good substitute for log-
normal distribution. Furthermore, the validity of the proposed
gamma shadow fading aided localization scheme is empirically
verified. In addition to experimental analyses, we investigate
the impacts of the uncertainties of propagation environment
conditions on localization via simulations.

The paper is organized as follows. In Section II, gamma
shadow fading model and its relation to lognormal distribution
are introduced. In Section III, gamma shadow fading aided lo-
calization procedure is formulated. The real-life experimental
studies for both model verification and positioning are given in
Section IV. The extended analysis results based on simulation
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are presented in Section V. In Section VI, the concluding
remarks are summarized.

II. GAMMA SHADOW FADING MODEL

Depending upon the nature of wireless channels, received
power level is mainly determined by path loss, macroscopic
and microscopic effects. Macroscopic fading originates from
the shadow fading effect by buildings, foliage and other
objects, while microscopic fading results from multipath char-
acteristics. Many available RSS based localization techniques
eliminate the microscopic effects by averaging the measure-
ment values in time, thus they need to consider only shadow
fading. Lognormal shadow fading model is used in almost all
positioning systems. In this paper, by adopting the gamma
shadow fading model, we propose a localization procedure
based on gamma shadow fading model.

For future convenience, we start with a brief explanation
of the lognormal and gamma distributions and the relation
between them. The shadow fading is represented by a random
variable (RV). While the uppercase term XS denotes this RV,
the lowercase xS denotes its specific measured value. Based
on lognormal distribution, probability density function (pdf)
of shadow fading is written as follows

f(xS) ∼ LN (µ, σ2) =
1√

2πσ2xS
exp

(
−(lnxS − µ)2

2σ2

)
. (1)

Here, the parameters of this distribution are calculated as
µ = E[lnXS ] and σ =

√
E[(lnXS)2]− E2[lnXS ], where

E[·] represents the expectation operator. The first and second
moments of RSS RV according to lognormal distribution are
defined as, respectively

E[XS ] = exp(µ+ σ2/2), (2)

E[X2
S ] = exp(2µ+ 2σ2). (3)

When the shadow fading is modeled with the gamma
distribution, the pdf of this RV is formulated as

f(xS) ∼ G(α, β) =
1

βαΓ(α)
xα−1S exp

(
−xS
β

)
, (4)

where α is the shape parameter, β is the scale parameter and
Γ(·) is the gamma function. The first and second moments of
this RV aided gamma distribution are written as

E[xS ] = αβ, (5)

E[x2S ] = α(α+ 1)β2. (6)

Hence, the shape and scale parameters are directly computed
by using the above identities as follows:

α =
E2[xS ]

E[x2S ]− E2[xS ]
, (7)

β =
E[x2S ]− E2[xS ]

E[xS ]
=

E[xS ]

α
. (8)

With the purpose of determining the relation between the
parameters of lognormal and gamma distributions (i.e. µ, σ,
α and β), equations given in (2), (5) and (3), (6) are equal to
each other respectively, and hence the following formulas are
obtained

α = (eσ
2

− 1)−1, (9)

β = exp

(
µ+

σ2

2

)
(eσ

2

− 1), (10)

µ = ln

(
αβ√

(1 + 1/α)

)
, (11)

σ2 = ln(1 + 1/α). (12)

III. LOCALIZATION BASED ON GAMMA SHADOW FADING

Next we explain the proposed localization scheme via
maximum likelihood estimator exploiting the gamma shadow
fading model defined above.

A. RSS Measurement Model

Suppose that there are N Wi-Fi access points (APs) and
a single client to be localized. Without loss of generality,
we consider a 2D indoor monitored region, thus the known
location of ith AP is denoted by θi = (xi, yi), and the target
location of client is denoted by θ = (x, y). Let average
received power level be represented by PR which is a RV due
to shadow fading. A specific measured value of the variable
is represented by pR. For simplicity, assume that radio signals
are emitted by omnidirectional antennas and all APs can
communicate with the client, i.e pR,i > γth where γth is the
receiver sensitivity for a signal to be received.

Under the log-distance path loss model and shadow fading
variable, the RSS measurement observed from the wireless
channel between the client and each AP in decibel1 can be
expressed as [13]:

ln(PR,i) = ln(κPT )− np ln(di) +XS,i, i = 1, . . . , N, (13)

where κ is a constant associated with the system properties,
PT is the transmit power, np is the path loss exponent (PLE)
and di =

√
(x− xi)2 + (y − yi)2 is the distance between the

client and the ith AP. The shadow fading RV is represented by
XS,i which is characterized with gamma distribution in this
section.

B. Maximum Likelihood (ML) Estimator

With the purpose of integrating the gamma shadow fading
model to localization systems, we develop an ML based local-
ization procedure given below. An ML estimator is frequently
utilized because it provides asymptotically efficient and high
accuracy estimation. In order to formulate a localization pro-
cedure as an ML estimation problem, initially, the likelihood
function of RSS measurement obtained from the channel

1RSS in decibel is prevalently written with regard to log10(·), but for
mathematical convenience, we here utilize the natural logarithm.
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between the client and ith AP can be written. Based on gamma
shadow fading model given in (4), the likelihood function can
be expressed as

f(pR,i; θ) =
1

β(θ)αΓ(α)
pα−1R,i exp

(
− pR,i
β(θ)

)
, (14)

where θ = (x, y) represents the target parameter (i.e. unknown
location of client) and pR,i represents the observation of
average received power level. Observe from the parameters of
gamma distribution given in (9) and (10) that only the scale
parameter β is dependent on θ because of including the mean
of shadow fading RV. Thus we can rewrite it as follows

β(θ) =
1

α
exp

(
ln(κPT )− np ln di + σ2/2

)
. (15)

By taking logarithm of the above identity, log-likelihood
function of RSS RV is obtained in the following form

L(pR,i; θ) = −α ln
(
β(θ)

)
+ ln

(
Γ(α)

)
+ (α− 1) ln(pR,i)−

pR,i
β(θ)

. (16)

Let us define by P the observation vector of the mentioned
RSS variables obtained from APs, (i.e. P = (pR,1, . . . , pR,N )),
then the joint likelihood function of P can be expressed as

f(P; θ) =
N∏
i=1

f(pR,i; θ). (17)

Also, the joint log-likelihood function is written in the form
of summation of each log-likelihood expression provided in

(16), i.e. L(P; θ) =
N∑
i=1

L(pR,i; θ).

In the sequel, ML estimation exploits the maximization of
the aforementioned joint log-likelihood function. Thus ML
based localization problem based on the gamma shadow fading
model can be expressed as

θ∗ = (x∗, y∗) = arg max
θ

f(M; θ) = arg max
θ

L(M; θ)

= arg min
θ

N∑
i=1

α ln(β(θ)) + pR,i/β(θ). (18)

ML based solution can be analytically obtained by equating
the first-order derivative of this function to zero. Due to the
nature of localization problem, a closed-form solution for
ML expression given in (18) cannot be obtained. However,
an optimal solution can be achieved with the help of an
iterative solver. In this paper, we use grid search method, also
called as multiresolution projection in the literature. In this
straightforward method, the monitored region is divided into
search points called as grid blocks, then an exhaustive search
made over these points to find the optimal solution.

IV. EXPERIMENTAL RESULTS

In this section, we describe our real-life testbed which
was implemented for two purposes: to empirically examine
whether gamma distribution is a good substitute to lognormal

Fig. 1. An illustration of our testbed layout. In a typical indoor office
environment, the testbed consists of one client, and three WiFi APs.

distribution and to test the proposed gamma shadow fading
aided ML based localization procedure. As depicted in Fig.
1, the testbed covers an office building, a typical indoor
environment including hallways, tables, chairs, with the floor
size of 13 m × 12 m. The system infrastructure is based on
Wi-Fi technology in order to take advantage of the off-the-
shelf Wi-Fi APs to estimate the positions of Wi-Fi enabled
devices, such as laptops, smartphones. It is seen from this
figure that our example system consists of a client and three
Wi-Fi APs. The client acts as a target device located at θ =
[4.77 m 4.56 m], while the Wi-Fi APs use as reference devices
placed at θ1 = [12.09 m 3.46 m], θ2 = [0.64 m 0.64 m], and
θ3 = [1.84 m 1.62 m]. For RSS data collection as involving
variations in time and propagation environment, the described
system is operated from 2200 to 1000. By utilizing standard
Wi-Fi AP, we collect 2000 RSS observations for each device.

A. Empirical Verification of Models

In order to investigate whether gamma and lognormal statis-
tical distributions are proper to characterize arbitrary RSS RVs,
we execute histogram and cumulative distribution function
(CDF) of RSS observation sets obtained from aforementioned
measurement scenario. For RSS values observed from the
three APs, the statistical histograms and lognormal, gamma
pdf estimates are illustrated in Fig. 2(a). As can be seen
from this figure, gamma and lognormal distributions exhibit a
similar behavior and neither one is superior. In the sequel, the
empirical CDFs and their estimations are provided in Fig. 2(b).
It is seen from this figure that gamma distribution is a good
fit for lognormal distribution especially for AP3 this model
is well-suited to empirical RSS observations. Consequently,
from these results, we verify the mentioned two shadow
fading models are interchangeable for representing actual RSS
measurements.

B. Empirical Verification of Localization

With the purpose of verifying the proposed ML based
localization scheme compliance with the practical scenarios,
we investigate the performance in terms of real-life RSS
measurements comparing lognormal and gamma distributions.
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(a)

(b)

Fig. 2. (a) Empirical histograms and pdf estimates of gamma, lognormal
distribution for AP1, AP2, AP3. (b) Empirical CDFs and their estimates.

By using the grid search method as iterative solver to carry
out the ML expressions for gamma and lognormal distributions
provided in (18) and Ref. [5], respectively, the obtained result
for arbitrary RSS observation of each AP is given in Fig.
3. In this analysis, the floor of monitored region is divided
into grid blocks, where the length of a block is set as
λ = 1 m. Furthermore, the PLE is estimated as np = 3.1 by
utilizing MMSE method. It is shown in the figure that gamma
distribution based ML solution provides consistent superior
localization accuracy. As a leading remark, we infer from this
result that gamma distribution for localization problem can be
noteworthy according to lognormal distribution.

V. NUMERICAL RESULTS

In order to find out the effect of imperfect estimation of
indoor wireless channel parameters (i.e. PLE, shadow fading
mean and variance) to localization performance, we employ
extensive analyses via simulations. For this, let us define an
error term denoted by ξ, the uncertainties on actual parameters
for lognormal and gamma distributions are formulated as
respectively

(µξ, σξ) = (µ, σ) + ξLN , (19)
(αξ, βξ) = (α, β) + ξG .

Fig. 3. Position estimation of gamma and lognormal model in terms of
experimental RSS measurements.

This term is an RV that is modeled with Gaussian distribution
with a zero mean and σ2

ξ variance, i.e. ξ ∼ N (0, σ2
ξ ).

All simulations conduct on Q = 1000 Monte Carlo (MC)
runs, thus the localization performance is visualized in terms
of the root mean square error (RMSE) which is defined as√√√√ 1

Q

Q∑
q=1

[
(xq − x∗q)2 + (yq − y∗q )2

]
, (20)

where (x, y) denote the true location of the client and (x∗q , y
∗
q )

denote its estimation in the qth MC run. For fair comparison
of considered distributions, the synthetic RSS measurements
are generated according to propagation model given in (13) by
considering both gamma and lognormal shadow fading. The
synthetic RSS data set based on lognormal is named as DLN ,
while based on gamma is named as DG .

The effect of imperfections in parameters of both shadow
fading models on localization are investigated for several σξ
values, the obtained results are provided in Fig. 4. As shown in
Fig. 4(a), large values of σξ slightly degrades the performance
of these models. When compared with the mentioned datasets,
it is seen that DG can achieve more accurate positioning than
DLN . In Fig. 4(b), we also plot the CDFs of the localization
errors for both datasets at two distinct σξ values.

Furthermore, we analyzed the error in estimation of PLE.
The results obtained for RMSE and CDFs are illustrated
in Figs. 5(a) and 5(b), respectively. It is seen from these
figures that as the errors in the PLE estimates increases the
performance slightly worsens. From all the simulation results,
we conclude that the impact of information uncertainties
about the channel characteristics on localization accuracy is
marginal and the gamma shadow fading model is suitable and
potentially can lead to analytical expressions.

VI. CONCLUDING REMARKS

We introduce a localization method by utilizing the ML
estimator based on gamma shadow fading model which may
characterize the channel conditions. In order to validate the
proposed model on practical scenarios, we develop an RSS
measurement testbed exploiting the standard Wi-Fi hardware
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(a)

(b)

Fig. 4. The localization performance investigation for the effect of imper-
fections in shadow fading models’ parameters (a) RMSE (b) CDF. DLN
represents the synthetic RSS values aided by lognormal distribution, while
DG represents aided by gamma distribution.

for indoor environment. Through the experimental analyses,
we show that gamma distribution can be a good substitute
for the classical lognormal distribution in compliance with
empirical RSS observations. In addition, it is highlighted
that gamma distribution can provide better localization per-
formance than lognormal distribution. Finally, via simulation
that uses the same scenario with the real-life experiment, we
observe that the imperfect information and errors about the
wireless channel characteristics only slightly deteriorates the
performance.
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