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Abstract—Many optimization problems in communications
and signal processing can be formulated as rank-one constrained
optimization problems. This has motivated the development
of methods to solve such problem in specific scenarios. How-
ever, due to the non-convex nature of the rank-one constraint,
limited progress has been made in solving generic rank-one
constrained optimization problems. In particular, the problem
of efficiently finding a locally optimal solution to a generic rank-
one constrained problem remains open. This paper focuses on
solving general rank-one constrained problems via relaxation
techniques. However, instead of dropping the rank-one constraint
completely as is done in traditional rank-one relaxation methods,
a novel algorithm that gradually relaxes the rank-one constraint,
termed the sequential rank-one constraint relaxation (SROCR)
algorithm, is proposed. Compared with previous algorithms, the
SROCR algorithm can solve general rank-one constrained prob-
lems, and can find feasible solutions with favorable complexity.

I. INTRODUCTION

Recently there has been a growing interest in optimization
problems that involve rank-one constraints. This is because
many optimization problems in communications and signal
processing applications can be cast as such problems [1].

Consider the following rank-one constrained optimization
problem:

min
X�0

g0(X) (1a)

s.t. gk(X)Ek bk, k = 1, . . . ,K (1b)
rank(X) = 1, (1c)

where g0, g1, . . . , gK : CN×N → R are continuous and
differentiable convex or affine functions of an N × N
complex-valued positive semidefinite matrix variable X � 0,
b1, . . . , bK ∈ R are scalar constants, and ”Ek” in (1b) could
refer to ”<”, ”≤” for the k-th constraint in (1b), or ”=” for
linear gk(X). We assume that the constraints (1b) and X � 0
form a bounded convex set to ensure that the objective function
g0(X) always achieves a finite value that is meaningful in
engineering applications.

Without the rank-one constraint rank(X) = 1, Problem (1)
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becomes the following relaxed problem:

min
X�0

g0(X) (2a)

s.t. gk(X)Ek bk, k = 1, . . . ,K, (2b)

which now is a convex optimization problem and thus can be
efficiently solved by standard convex optimization methods,
e.g., CVX. However, since the rank function is quasi-concave
and subadditive [2], the non-convex constraint rank(X) = 1
causes the original problem (1) to become NP-hard in general.
In some special cases, Problem (1) may be convex or otherwise
have lower complexity [3], [4]. However, in this work, we will
focus on the generic case when Problem (1) is NP-hard.

With this viewpoint, some heuristic approaches have been
proposed to obtain sub-optimal or feasible rank-one solutions
for Problem (1). These can be categorized into several ap-
proaches: 1) Rank-one constraint relaxation – first solve the
relaxed problem without the rank-one constraint, and then
construct a rank-one solution based on the solution of the
relaxed problem if its solution is not rank-one. Otherwise,
the solution of the relaxed optimization problem is exactly the
solution to the original rank-one constrained problem [1], [5]–
[8]. A drawback of this approach is that solving the relaxed
problem usually yields a high rank solution, and in addition
the constructed rank-one solution is usually sub-optimal or
even infeasible for the rank-one constrained problem; 2) Rank
minimization – first approximate the rank function by some
tractable function, and then add the approximate rank function
to the original objective function as a penalty term [2], [9],
[10]. A difficulty with this approach is that its performance de-
pends on both the quality of the rank-function approximation
and the penalty parameter setting, as it is well known that
different penalty parameters influence both the performance
and complexity of penalty-based algorithms; 3) Quadratic
optimization – first rewrite a rank-one positive semidefinite
matrix variable as a quadratic term of a vector variable such
that the rank-one constraint can be avoided, and then solve
a quadratic optimization problem to obtain a vector variable
[11], [12]. Unfortunately, there is no ”free lunch”, since in
general it is still hard or even more difficult to solve a quadratic
optimization problem. Thus, it is common to use semidefinite
programming (SDP) to formulate a quadratic optimization
problem as a rank-one constrained optimization problem.

These existing heuristic approaches typically work for some
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specific cases but not generic problems. This motivates us to
propose a novel rank-one constrained optimization technique
– sequential rank-one constraint relaxation (SROCR). Instead
of dropping the rank-one constraint completely, the basic idea
of this algorithm is to relax the rank-one constraint gradually
such that it is easier to find a feasible solution. In addition,
the SROCR algorithm enables one to generate a locally op-
timal solution to a generic rank-one constrained optimization
problem if the relaxed optimization problem without a rank-
one constraint is a convex optimization problem. The proposed
algorithm is evaluated via numerical results, which imply that
the proposed algorithm can usually achieve a better objective
function value with lower or comparable complexity compared
with baseline algorithms.

II. THE SEQUENTIAL RANK-ONE CONSTRAINT
RELAXATION ALGORITHM

Inspired by existing rank-one optimization methods, in this
section we propose a novel sequential rank-one constraint
relaxation algorithm to generate a guaranteed rank-one solu-
tion, which can be shown to be a Karush-Kuhn-Tucker (KKT)
stationary solution to the original optimization problem (1).

A. Rank-One Constraint Reformulation and Analysis

Considering that rank(X) is a discontinuous non-convex
function and does not have a closed-form expression [2], we
reformulate rank(X) = 1 to the following equivalent form:

λmax(X) = Tr(X), (3)

where λmax(X) and Tr(X) denote the largest eigenvalue
and trace of X , respectively. Now, (3) involves continuous
functions of X but still a non-convex constraint. As we know
that λmax(X) can be equivalently represented as

λmax(X) = max
v∈CN×1,||v||2≤1

vHXv, (4)

(3) can be further formulated as

max
v∈CN×1,||v||2≤1

vHXv = Tr(X). (5)

B. Alternating Optimization Algorithm

Based on the equivalent rank-one constraint (5), we can
consider the vector v as a slack variable for the original
problem (1). Then, Problem (1) is equivalent to the following
joint optimization problem with respect to {v,X}:

min
X�0,v

g0(X) (6a)

s.t. gk(X)Ek bk, k = 1, . . . ,K (6b)

max
v∈CN×1,||v||2≤1

vHXv = Tr(X). (6c)

Suppose that we find a feasible point X(i) for Problem (6).
The constraint (6c) implies that X(i) must be rank-one to
ensure λmax(X

(i)) = Tr(X(i)). Thus, the optimization of
Problem (6) with respect to v yields an optimal solution

v(i) = umax(X
(i)). (7)

On the other hand, for any given v(i) in (7), the non-convex
constraint (6c) becomes a linear constraint

v(i),HXv(i) = Tr(X), (8)

because (8) is a linear constraint on X . Then, Problem (6)
becomes a convex optimization problem with respect to the
variable X , and thus the optimal solution X(i+1) can be
obtained by using standard convex optimization methods.

However, to make (8) hold, the solution X(i+1) has to
be rank-one and its principal eigenvector should be equal to
v(i), i.e., the direction of umax(X

(i+1)) should be parallel to
that of umax(X

(i)). This alternating optimization of {v,X}
cannot improve the solution quality compared with the initial
feasible point. Furthermore, it is still unknown how to obtain a
feasible solution for the generic problem (1), as the difficulty
of finding a feasible solution for generic NP-hard optimization
problems with multiple constraints is even comparable with
that of obtaining its optimal solution [13].

C. SROCR Optimization Idea and Algorithm

To break the bottleneck of the rank-one constraint, we
propose a novel algorithm by sequentially relaxing the rank-
one constraint rather than completely dropping it as is done
in traditional algorithms.

1) Idea of SROCR: We propose to partially relax the rank
one constraint λmax(X) = Tr(X) to

λmax(X) ≥ w(i) Tr(X), (9)

where w(i) ∈ [0, 1] denotes a relaxation parameter that controls
the largest eigenvalue to trace ratio of X , as the solution X?

based on (9) is guaranteed to satisfy the following condition:

w(i) ≤ λmax(X
?)

Tr(X?)
≤ 1. (10)

Then, the constraint set of (9) gradually shrinks and X? can
approach 1 as w(i) increases. One significant benefit of the
above partial rank-one constraint relaxation scheme is that
it makes it easier to find a feasible solution X(0) for the
optimization with a small w(i). For example, when w(0) = 0,
(9) is equivalent to dropping the rank-one constraint. In this
case, we can easily find a feasible point X(0) by solving the
convex relaxed problem (2). This motivates us to increase w(i)

sequentially from 0 in iterations such that the constraint set (9)
can gradually approach the real rank-one constraint set when
w(i) = 1.

2) SROCR Algorithm: The proposed SROCR algorithm can
be described as follows.

In Problem (12), the constraint (12c) is jointly derived from
(7), (8) and (9). In (15), δ(i) denotes the step size for weight
parameter updating. To make X(i) more likely to be feasible
for Problem (12) in the next iteration, in general the step size
{δ(i)} should be small. If the pre-defined step size δ(i) makes
Problem (12) insoluble or infeasible, we can reduce the step
size by (14) until Problem (12) is solvable.
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Algorithm 1 SROCR Algorithm for Problem (1)
Initialization: i = 0, convergence thresholds ε1, ε2.
Solve the relaxed problem (2) and obtain X(0) when w(0) = 0.
Define an initial step size

δ(0) ∈
(
0, 1− λmax(X

(0))/Tr(X(0))
]
. (11)

repeat
Given {w(i),X(i)}, solve the convex problem

min
X�0

g0(X) (12a)

s.t. gk(X)E bk, k = 1, . . . ,K (12b)

umax(X
(i))HXumax(X

(i)) ≥ w(i) Tr(X). (12c)

if Problem (12) is solvable then
Obtain the optimal solution X(i+1) for Problem (12);

δ(i+1) ← δ(0); (13)
else

δ(i+1) ← δ(i)/2. (14)

w(i+1) ← min

(
1,
λmax(X

(i+1))

Tr(X(i+1))
+ δ(i+1)

)
. (15)

i← i+ 1.
until w(i−1) ≥ ε1 & |g0(X(i))− g0(X(i−1))| ≤ ε2;

Remark 1 The proposed SROCR Algorithm 1 makes the pro-
cedure of rank-one optimization easier to analyze. In principle,
Algorithm 1 gradually projects the largest eigenvector of the
matrix variable X onto an updated direction v(i) until all
the power lies in a one-dimensional subspace. In addition,
unlike penalty based methods, X(i) approaches a rank-one
solution by monotonically increasing {w(i)} in an iterative
but controllable manner.

The step size reduction in (14) could be extended to the
general case δ(i+1) ← δ(i)/L where L ≥ 2 in order to speed
up making Problem (12) solvable if it is infeasible in the
last iteration. In the first iteration, the relaxation weight w(1)

computed based on (15) satisfies 1/N < w(1) ≤ 1, as the ratio
of the largest eigenvalue to the trace of an arbitrary positive
semidefinite matrix should be not less than 1/N . �

Theorem 1 Given a feasible initial point X(0), Algorithm
1 converges to a KKT stationary solution of Problem (6),
equivalent to Problem (1). �

Proof: Solving Problem (12) can be considered as an
alternating optimization of v = umax(X) and X . The proof
is detailed in [14].

Remark 2 The performance of Algorithm 1 depends on the
initialization. A large initial step size δ(0) in (11) may cause
some infeasible iterations, but a small initial step size may
require more iterations to increase w(0) to 1. In addition,
as Algorithm 1 is a projection procedure from an infeasible

solution to a feasible one, it may skip some good solutions
in the projection procedure if the step size is too large. In
contrast, a small step size usually leads to a smooth projection
procedure, thereby yielding a better solution with a high
probability. Therefore, we can easily determine an initial step
size δ(0) according to the priority of complexity vs. accuracy.�

III. NUMERICAL EXAMPLE

To illustrate this algorithm we consider an example – a
cooperative interference channel of two transmitter-receiver
pairs, in which each transmitter causes interference to the
other receiver in a spectrum sharing scenario. We assume that
each node is equipped with N antennas and a single radio
frequency (RF) chain. Each transmitter employs beamforming
to minimize its interference leakage but subject to its own
desired signal strength constraint. Let x ∈ CN×1, H0 ∈
CN×N and H1 ∈ CN×N denote the analog beamforming
vector of a transmitter, the interfering channel matrix to the
undesired receiver and the desired channel matrix to its own
receiver, respectively. Then, we can formulate the following
optimization problem:

min
x∈CN×1

xHHH
0 H0x (16a)

s.t. xHHH
1 H1x ≥ γ0, (16b)

|x(n)| = 1, n = 1, . . . , N. (16c)

where γ0 in (16b) denotes the minimal required signal strength
to guarantee the quality of service (QoS) and is defined as
γ0 = Tr(HH

1 H1)/N . Based on the SDP technique and the
definition of X , xxH , Problem (16) is equivalent to

min
X�0

Tr(HH
0 H0X) (17a)

s.t. Tr(HH
1 H1X) ≥ γ0, (17b)

Tr(EnX) = 1, n = 1, . . . , N (17c)
rank(X) = 1, (17d)

where En is a zero N×N matrix except for the n-th diagonal
element being one. We assume Rayleigh fading channels in
which the elements are independent and identically distributed
with zero mean and unit variance. In addition, 100 random
channels {H0,H1} for Problem (17) are evaluated for Monte
Carlo simulations.

Let X(0) denote the solution to the relaxed problem (17a)-
(17c). When N = 16, Fig. 1 shows that all the initial solutions
{X(0)} for 100 random realizations of {H0,H1} are not
rank-one. To extract a rank-one solution, the proposed SROCR
algorithm is first evaluated. Fig. 2 and Fig. 3 show its conver-
gence for one channel realization but with different initial step
sizes1. In Fig. 2, we observe that the objective values converge
gradually to different values at different speeds. Fig. 3 shows
the convergence of the largest eigenvalue to trace ratio towards

1The algorithm iterates until λ1(X
(i))/Tr(X(i)) ≥ 0.999 and

|Tr(HH
0 H0X

(i)) − Tr(HH
0 H0X

(i−1))| ≤ 10−4 are simultaneously
satisfied. In addition, the maximal number of iterations is defined as 500.
The convergence criterion for the algorithms used as baselines is similarly
defined.
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Fig. 1: λ1(X(0))/Tr(X(0)) for 100 channels when N = 16.
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Fig. 2: Objective convergence via the SROCR algorithm for
one channel realization with different values of the initial step
size

1, which indicates a rank-one solution, for different values of
δ0. The step size updating happens when the objective values
or the largest eigenvalue to trace ratio stay constant in Fig. 2
and Fig. 3. This example implies that the proposed algorithm
has a reasonably low complexity (within only a few tens of
iterations) in general, and a small initial step size may lead to
a better solution but at the cost of more iterations.

To illustrate the relationship between convergence and the
initial step size, Figs. 4-5 show average convergence results
for 100 random channel realizations versus the initial step size.
Interestingly, when the initial step size decreases, Fig. 4 shows
that the average converged objective value of the minimization
problem (17) decreases as well, but Fig. 5 shows that the
corresponding average complexity increases. This result is
consistent with our assertion in Remark 1 for Algorithm 1
that a smaller step size enables smoother projections, which
provides a high probability of achieving a better solution.
Therefore, there exists a trade-off between performance and
complexity. The converged objective values change slightly
when δ(0) ≤ 0.1 in Fig. 4 and the convergence rate increases
slightly when δ(0) ≥ 0.1 in Fig. 5. Thus, δ(0) = 0.1 might be
a good choice for this problem to achieve reasonable perfor-
mance with low complexity. On the other hand, if the system
has a high requirement in terms of objective performance,
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Fig. 3: λ1(X(i))/Tr(X(i)) convergence to 1 via the SROCR
algorithm for one channel realization with different values of
the initial step size (same legend as Fig. 2)
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Fig. 4: Average objective value achieved by the SROCR
algorithm vs. the initial step size

a smaller step size could be selected, e.g., δ(0) = 0.05 or
δ(0) = 0.01.

Based on the same channel realizations, two recently pro-
posed methods are evaluated as baselines for performance
comparison, since both have already been shown to outperform
most other related methods: 1) PSCA – the penalty based
successive convex approximation proposed in [15] with an
additional updating of the penalty parameter µ(i); and 2) FPP
– the feasible point pursuit (FPP) algorithm in [11] with a
fixed penalty parameter µ(0). We summarize a performance
comparison of the proposed algorithm with these two baseline
algorithms with different numbers of antennas as shown in
Table I. In particular, we run the proposed SROCR algorithm
for δ(0) = 0.01 and δ(0) = 0.1, and PSCA and FPP algorithms
for µ(0) = 10 and µ(0) = 1000, respectively. Table I shows
that the proposed algorithm with δ(0) = 0.01 can always
converge to feasible solutions yielding smaller objective values
compared with the baseline algorithms. Note also that PSCA
usually outperforms FPP in terms of both objective values and
convergence rate. Unlike the proposed algorithm, PSCA and
FPP with some initial penalty parameters may lead to infea-
sible solutions, where the infeasibility is defined as either of
the situations of convergence to an infeasible solution or non-
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Fig. 5: Average number of iterations for convergence of the
SROCR algorithm vs. initial step size

TABLE I: Average performance comparison: for each N , the
first, second and third subrows denote converged real objective
values (excluding the values of penalty terms), computation
time [second] and probability of infeasibility.

N
Proposed PSCA FPP

δ(0):0.01/0.1 µ(0):10/1000 µ(0):10/1000

16
15.49/15.81 15.57/15.73 15.84/15.75

15/9.82 6.71/21.82 27.76 /109.82
0/0 0/0 0/2%

24
28.11/29.40 28.69/29.26 28.38/29.08
21.87/12.03 9.55/42.39 75.67/194.27

0/0 0/0 5%/6%

32
45.63/49.03 46.82/48.42 47.20/48.05
40.83/11.85 17.44/63.25 232.57/287.49

0/0 0/0 27%/6%

40
66.87/72.71 68.73/70.63 67.68/70.86
58.32/18.13 22.75/114.09 442.45/347.05

0/0 0/0 5%/4%

48
90.37/99.57 93.02/97.68 91.47/97.45
82.90/22.09 30.54/151.07 769.78/447.56

0/0 0/0 85%/9%

56
118.53/129.34 123.41/127.06 117.13/128.69

79.97/27.61 41.48/234.93 984.57/545.59
0/0 0/2% 99%/18%

64
149.09/166.62 153.32/160.60 144.72/163.43

138.02/33.6 57.6/350.9 1110.1/598.9
0/0 0/3% 100%/11%

convergence within 500 iterations. For example, µ(0) = 10
usually results in an infeasible solution by FPP for large N .
In addition, the same µ(0) for FPP and PSCA can result in
feasible solutions for small N but not for large N . Therefore, it
is in general unclear how to select good penalty parameters for
the baseline algorithms. In contrast, we observe that the same
δ(0) works robustly for the proposed algorithm with different

values of N .
IV. CONCLUSIONS

In this paper, we have considered rank-one constrained op-
timization problems. We have proposed the SROCR algorithm
which achieves a locally optimal solution for a generic rank-
one constrained problem by sequentially relaxing the rank-one
constraint. We have seen that the proposed algorithm usually
achieves a better final objective value but with a comparable
or even lower complexity compared with baseline algorithms.
Moreover, we have seen that the proposed algorithm works for
generic rank-one constrained optimization problems, while, for
example, the feasible point pursuit algorithm is only valid for
quadratic programs.
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