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Abstract— In this paper, we consider a wireless system with
a central station equipped with a large number of antennas
surveilling a multitude of single antenna devices. The devices
become active and transmit blocks of symbols sporadically. Our
objective is to blindly identify the active devices and detect the
transmit symbols. To this end, we exploit the sporadic nature
of the device to station communication and formulate a sparse
optimization problem as an integer program. Furthermore,
we employ the convex relaxation of the discrete optimization
variables in the problem in order reduce its computational com-
plexity. A procedure to further lower the symbol detection errors
is also discussed. Finally, the influence of system parameters on
the performance of the proposed techniques is analysed using
simulation results.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems,
with tens or hundreds of antennas at base stations (BSs), are
capable of simultaneously serving a large number of users
over the same time-frequency resources with immense data
rates [1–3]. Along with heterogeneous network architectures
[4–6] and millimeter wave communication [7, 8], the massive
MIMO technology can enhance spectral efficiency of the
current wireless networks by many orders of magnitude, and
justifiably it is recognized as one of the central pillars of the
upcoming 5G networks [9, 10].

The application of massive MIMO technology is, however,
not limited to mobile communication networks. Similar to
cellular networks, the benefits of massive MIMO systems
can be reaped by other wireless networks such as wire-
less sensor networks (WSNs), wireless sensor and actuator
networks (WSANs), wireless local area networks (WLANs),
industrial WLANs, wireless personal area networks (WPANs),
for the purpose of process and industrial automation [11, 12],
condition monitoring [13, 14], smart grid monitoring and
control [15, 16], medical monitoring, to name a few. For
such networks that comprise of inexpensive low-complexity
low-power sensor nodes, which typically accumulate or sense
some information with an objective of transmitting it to the
central stations, the massive MIMO architecture is particularly
beneficial. With the use of large number of antennas at the
stations, beamforming techniques can be applied that signif-
icantly reduce uplink transmit powers at low-power nodes
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Fig. 1. Schematic diagram of the system.

[17]. The central stations can also be empowered to blindly
identify multiple active devices and communicate with them
simultaneously over the same channel, thereby minimizing the
signalling overhead associated with the channel access and
scheduling process on the low-complexity devices. Moreover,
by allowing the nodes to transmit signals at random without
any need for the channel access and scheduling process, the
overall latency in the system can be reduced, which is crucial
for time-critical applications such as industrial automation.
High spatial resolution can be achieved with the use of large
number of antennas, which enables the stations to resolve
closely spaced nodes [18, 19].

In this paper, we consider a general massive MIMO network
with a central station (or BS) equipped with a large number of
antennas. The network also comprises single antenna devices
(users, sensor nodes, etc.), which become active and transmit
blocks of symbols sporadically. We exploit the sporadic nature
of device to station communication and formulate a sparse op-
timization problem as an integer program, in order to identify
the active devices and detect the transmit symbols. We further
relax the integer constraints on the optimization variables to
model the problem as a convex program. A procedure to
further reduce the symbol error rate (SER) is discussed, for
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those networks requiring a higher link-reliability. Simulation
results illustrate the suitability of the proposed method for
large scale networks with high link-reliability requirements
and time-critical applications.

II. SYSTEM MODEL

We consider a co-channel uplink MIMO system with L
single antenna devices communicating with a central station
equipped with N receive antennas, as shown in Fig. 1.
The time resource is divided into frames, with each frame
comprised of T time slots. At the beginning of a frame the
`th device wakes up randomly and independently with a prob-
ability P` � 1, synchronizes to the network, and transmits a
block of T symbols, for ` ∈ L , {1, 2, . . . , L}. Therefore, the
average number of transmitting (i.e., active) devices during any
frame is given by K =

∑L
`=1 P` � L. Each transmit symbol

is assumed to be chosen independently from a constellation set
C , {c1, c2, . . . , cM} with cm ∈ C,m ∈M , {1, 2, . . . ,M}.
Let st , [s1,t, s2,t, . . . sL,t]

T , t ∈ T , {1, 2, . . . , T} be the
transmit symbol vector at the tth time slot of a given frame,
with s`,t ∈ C being the transmit symbol of the `th device
at the tth time slot if it is active and s`,t = 0 otherwise.
The matrix S , [s1, s2, . . . , sT ] denotes the transmit symbol
matrix. Let h` ∈ CN×1 represent the channel vector between
the `th device and the station, with the channel matrix defined
as H , [h1,h2, . . . ,hL]. The channel is assumed to be flat-
fading and constant over the duration of the frame, which
is a valid assumption for the sensor networks with relatively
fixed positions of stations, sensor nodes, and scatterers. Fur-
thermore, we assume that H is known at the station, which
can be accomplished by, e.g., occasional uplink training using
pilot signals [20, 21]. Any minor drift in the channel, e.g., due
to clock offsets, can also be compensated by the station trans-
mitting regular downlink pilots, and the devices performing
the necessary preprocessing on the transmit symbols. In the
case of line-of-sight environment, which will be typical in 5G
networks due to the deployment of small cells and millimeter
wave communication, the channel matrix can also be described
analytically for each device [22, 23], which eliminates the
training requirements.

Let yt indicate the received signal vector at the central
station at the tth time slot. The received signal matrix Y ,
[y1,y2, . . . ,yT ] over T time slots in a given frame can be
written as

Y = HS + Z, (1)

where Z is noise matrix at the central station. All elements
in Z are assumed to be i.i.d. circularly symmetric complex
Gaussian distributed with mean zero.

III. PROBLEM FORMULATION

The problem of joint active device identification and trans-
mit symbol detection for the system described in the previous

section can be formulated as an integer program as follows:

min
X,B,a

||Y −HX||F (2a)

s.t. x`,t =
M∑

m=1

cmb`,t,m, ∀` ∈ L,∀t ∈ T , (2b)

a` =
M∑

m=1

b`,t,m ≤ 1, ∀` ∈ L,∀t ∈ T , (2c)

b`,t,m ∈ {0, 1}, ∀` ∈ L,∀t ∈ T ,∀m ∈M, (2d)

where the solution matrix X? is a matrix with the element x`,t
being an estimate of the transmit symbol s`,t. The optimization
matrix B is a binary matrix, with its element b`,t,m = 1 if the
`th device transmits the symbol cm at the tth time slot and
b`,t,m = 0 otherwise. The binary vector a comprises the active
device indicator a`, with a` = 1 if the `th device is active
during the given frame and a` = 0 otherwise. In the above
problem, ||·||F stands for Frobenius norm. Constraints (2b)-
(2d) restrict values of symbol estimates x`,t, ` ∈ L, t ∈ T , to
take value 0 (if the `th device is passive in the tth time slot)
or, alternatively, one of the symbols in the constellation set C
(if the `th device is active in the tth time slot).

However, due to the combinatorial nature of problem (2)
its practical applicability is limited to very small networks
with few time slots in the frames. In order to reduce the
complexity, we exploit the sporadic nature of the device to
station communication, and formulate the problem as

min
X,B,a

||Y −HX||F + λ ||a||1 (3a)

s.t. x`,t =

M∑
m=1

cmb`,t,m, ∀` ∈ L,∀t ∈ T , (3b)

a` =
M∑

m=1

b`,t,m ≤ 1, ∀` ∈ L,∀t ∈ T , (3c)

b`,t,m ∈ {0, 1}, ∀` ∈ L,∀t ∈ T ,∀m ∈M, (3d)

where λ denotes an appropriate weighting constant. The
minimization of the `1-norm of a in the objective function
promotes row-sparsity on X, and thereby encourages the
optimal solution to have only few active devices [24, 25],
which complies with the system model. The integer programs
such as problem (3) is generally solved employing continuous
relaxation based procedures such as the branch-and-bound
algorithm, where the discrete constraint (3d) is replaced by the
continuous bound constraint 0 ≤ b`,t,m ≤ 1. In such methods,
the additional `1-norm term in the objective function promotes
the early pruning of non-row sparse nodes of the solution
space, and thereby speeds-up the optimization process.

The complexity of the above problem can be further reduced
by relaxing the search space of each transmit symbol estimate
to the convex hull of constellation points in C [26, 27], and by
minimizing the `2,1-norm of X directly, similar to the group
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LASSO problems in [28–30]. The resultant problem is given
by

min
X
||Y −HX||F + λ ||X||2,1 (4a)

s.t. x`,t ∈ conv(C), ∀` ∈ L,∀t ∈ T , (4b)

where conv(C) symbolizes the convex hull of constellation
points in C. The benefits of tailoring conv(C) as the search
space for the transmit symbol estimate x`,t, ` ∈ L, t ∈ T ,
are twofold: Firstly, the relaxation of the search space of x`,t
from the discrete set C to the continuous convex set conv(C)
makes the problem a convex program, which can be readily
solved using existing fast algorithms such as the interior-point-
methods [26]. Moreover, the number of optimization variables
in the problem becomes significantly smaller when compared
with those in problems (2) and (3). Secondly, by restricting
the search space of x`,t to conv(C) instead of admitting a
completely unconstrained search space C, the SERs can be
reduced [31, 32].

The set of indices of active devices, denoted as I, can be
obtained from the indices of non-zero rows of the optimal
solution X? of problem (3) or (4), i.e.,

I ,

{
`
∣∣∣ T∑
t=1

|x`,t| 6= 0,∀` ∈ L

}
. (5)

Subsequently, the transmit symbol estimates of the ith device
can be directly obtained from the elements of the ith row of
X? in case of problem (3), and by projecting each element
in the row to the nearest constellation point in C, in case of
problem (4).

IV. SYMBOL DETECTION ENHANCEMENT

In this section, we discuss a symbol detection enhancement
(SDE) method to improve the symbol detection performance
for devices that have been classified as active exerting one of
the sparse optimization approaches introduced in the previous
section. Let K = |I| be the number of active devices at a given
frame. Let H̄ be the channel matrix comprising the channel
vectors of active devices, i.e., H̄ , [hI1 ,hI2 , . . . ,hIK ], where
Ik indicates the kth element of the set I. Let S̄ represent the
transmit symbol matrix of K active devices over the given
frame. Consequently, we can rewrite Eq. (1) as

Y = H̄S̄ + Z. (6)

The optimization problem to estimate S̄ in order to minimize
the SER is given by

min
X̄

∣∣∣∣Y − H̄X̄
∣∣∣∣
F

(7a)

s.t. x̄i,t ∈ C, ∀i ∈ I,∀t ∈ T , (7b)

where the optimal solution X̄? , [x̄1, x̄2, . . . , x̄T ] is an
estimate of S̄ and x̄i,t is an element of X̄.

Similar to problem (4), the search space of x̄i,t can be
relaxed to conv(C) in order to reduce the computational
complexity of the above problem. Moreover, since the transmit

symbols of an active device at different time slots are inde-
pendent of one another, the problem can be decomposed into
T independent subproblems, one for each time slot, given by

min
x̄i,t

∣∣∣∣yt − H̄x̄t

∣∣∣∣
2

(8a)

s.t. x̄i,t ∈ conv(C), ∀i ∈ I, (8b)

∀t ∈ T . The subproblems in problem (8) can be efficiently
solved employing the low-complexity algorithm proposed in
[31] when the symbols in the constellation set C are constant
modulus, and similar approaches can be devised when symbols
have different modulus.

V. NUMERICAL RESULTS

In this section, we compare the performance of problem
(3) (named as IP-based method), problem (4) (named as CP-
based method), and the conventional zero-forcing based (ZF-
based) method1, in terms of device identification error rate
(DIER), SER and run-time. The DIER accounts for both false
alarms (inactive devices being identified as active devices) as
well as missed detections (active devices being not identified).
The performance achieved by the SDE method, discussed in
Section IV, is also included in the SER comparisons.

Simulations are carried out with the Rayleigh fading chan-
nel. The transmit symbols are chosen from the quadrature
phase-shift keying (QPSK) constellation (M = 4). A weight-
ing constant λ = 0.4 is chosen empirically for both problems
(3) and (4). The optimization solver CPLEX v12.6.1 is em-
ployed to solve the IP-based method as well as the CP-based
method.

Fig. 2 compares the performance of the mentioned methods
for a medium scale network. From the first and second sub-
figures it is apparent that the IP-based method is remarkably
superior to both the CP-based and the ZF-based methods in the
DIER and SER performances. However, the third sub-figure
reveals that the average run-time of the IP-based method grows
exponentially with the network size, due to its exponentially
growing complexity, which limits the applicability of this
method to only medium scale networks. On the contrary, the
average run-time of the CP-based method is extremely low,
and increases nominally with the network size.

Fig. 3 and Fig. 4 illustrate that the CP-based method yields
strikingly low DIERs and SERs respectively, when compared
with the ZF-based method, for a larger network with N = 32
receive antennas and L = 64 devices. In the first sub-figure of
Fig. 3 we can notice that the DIER of the CP-based method
improves significantly as the signal-to-noise-ratio (SNR) at
the central station increases. The second sub-figure in Fig.
3 depicts the DIER performance of the CP-based and the
ZF-based methods for various values of symbol block-size T .
From the sub-figure it becomes apparent that solving the prob-
lem jointly over multiple symbols (T > 1) yields a superior
DIER performance when compared with executing the same

1The ZF-based method solves the under-determined system Y −HX = 0,
and quantizes the solutions to the nearest point in a set that comprises the
constellation symbols and zero.
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Fig. 2. Comparison of the performance and the average run-time of the various methods.
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Fig. 3. Device identification error rates of the CP-based and the ZF-based methods for N = 32, L = 64.
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Fig. 4. Symbol error rates of the CP-based and the ZF-based methods for N = 32, L = 64.

over individual symbols (T = 1). In the third sub-figure we
can notice that the DIER performance improves gradually as
the ratio K

L decreases due to increase in the sparsity level
in the system. The sub-figures in Fig. 4 demonstrate that the
SDE method reduces the SERs substantially, which highlights
the effectiveness of the discussed enhancement process in
achieving a higher link-reliability in wireless networks.

VI. CONCLUSION

Sparse optimization methods are developed for blind ac-
tive device identification and symbol detection in a massive
MIMO system. The proposed methods empower the central

stations to identify and communicate with multiple devices
simultaneously over the same channel. By eliminating the
need for channel access and scheduling process the proposed
methods reduce the signalling overhead and the latency in
wireless networks, which are added benefits of the massive
MIMO for application such as industrial automation, along
with the standard massive MIMO benefits. Moreover, a symbol
detection enhancement method is discussed. The simulation
results show that a higher link-reliability can be achieved
with the enhancement method. The run-time analysis also
illustrate the suitability of the proposed methods for large scale
networks with time-critical applications.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 736



REFERENCES

[1] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta,
“Massive MIMO for next generation wireless systems,” IEEE
Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.

[2] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and
R. Zhang, “An overview of massive MIMO: Benefits and
challenges,” IEEE J. Select. Topics in Signal Process., vol. 8,
no. 5, pp. 742–758, Oct. 2014.

[3] R. Hayakawa, K. Hayashi, H. Sasahara, and M. Nagahara,
“Massive overloaded MIMO signal detection via convex op-
timization with proximal splitting,” in 24th European Signal
Process. Conf. (EUSIPCO), Budapest, Hungary, Aug. 2016, pp.
1383–1387.

[4] V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun,
M. Lossow, M. Sternad, R. Apelfrojd, and T. Svensson, “The
role of small cells, coordinated multipoint, and massive MIMO
in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51, May
2014.

[5] G. Hegde, O. D. Ramos-Cantor, Y. Cheng, and M. Pesavento,
“Optimal resource block allocation and muting in heterogeneous
networks,” in Proc. IEEE Int. Conf. on Acoustics, Speech and
Signal Process. (ICASSP), Mar. 2016, pp. 3581–3585.

[6] O. D. Ramos-Cantor, J. Belschner, G. Hegde, and
M. Pesavento, “Centralized coordinated scheduling in LTE-
Advanced networks,” CoRR, vol. abs/1702.03890, 2017.
[Online]. Available: http://arxiv.org/abs/1702.03890

[7] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang,
G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez,
“Millimeter wave mobile communications for 5G cellular: It
will work!” IEEE Access, vol. 1, pp. 335–349, 2013.

[8] J. Qiao, X. S. Shen, J. W. Mark, Q. Shen, Y. He, and L. Lei,
“Enabling device-to-device communications in millimeter-wave
5G cellular networks,” IEEE Commun. Mag., vol. 53, no. 1, pp.
209–215, Jan. 2015.

[9] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano,
A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE
J. Select. Areas Commun., vol. 32, no. 6, pp. 1065–1082, Jun.
2014.

[10] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and
P. Popovski, “Five disruptive technology directions for 5G,”
IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014.

[11] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka,
C. Wu, L. Nie, and Y. Chen, “Real-time wireless sensor-actuator
networks for industrial cyber-physical systems,” Proc. of the
IEEE, vol. 104, no. 5, pp. 1013–1024, May 2016.
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