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ABSTRACT
We address the problem of selecting, from a given dictionary,
a subset of predictors whose linear combination provides the
best description for the vector of measurements. To this end,
we apply the well-known matching pursuit algorithm (MPA).
Even if there are theoretical results on the performance of
MPA, there is no widely accepted rule for stopping the al-
gorithm. In this work, we focus on stopping rules based on
information theoretic criteria (ITC). The key point is to evalu-
ate the degrees of freedom (df) for the model produced at each
iteration. This is traditionally done by computing the trace of
the hat matrix which maps the data vector to its estimate. We
prove some theoretical results concerning the hat matrix. One
of them provides an upper bound on the increase of df from
the m-th to the (m + 1)-th iteration. Based on the proper-
ties of the hat matrix, we propose novel ITC for selecting the
number of iterations. All of them are obtained by modifying
criteria designed for variable selection in the classical linear
model. For assessing the performance of the novel criteria,
we conduct a simulation study.

Index Terms— Matching pursuit algorithm, hat matrix,
projector, information theoretic criteria, number of iterations

1. INTRODUCTION

The matching pursuit algorithm (MPA) is well-known in the
signal processing community mainly due to [1]; it is also
applied in statistics and in approximation theory where it is
known as L2-boosting [2] and as the pure greedy algorithm
[3], respectively. When MPA is used for high-dimensional
linear models, existing theoretical results do not provide a
stopping rule for the algorithm (see, for example, [4]). In
practical applications the number of iterations is selected ei-
ther by using cross-validation (CV) or an information theo-
retic (IT) criterion [2]. The major disadvantage of CV is its
computational burden. The IT criteria provide a promising
alternative, but until now their use was restricted only to vari-
ants of the Akaike Information Criterion [5].
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Note that the definition of any information criterion in-
volves the degrees of freedom (df) of the models which com-
pete for the description of the data vector y. For a model that
produces an estimate ŷ of y, df is traditionally taken to be
the trace of the hat matrix, i.e. the trace of the linear opera-
tor which maps y to ŷ [6]. However, empirical studies have
demonstrated that the trace-based evaluation may underesti-
mate the value of df [7].

We prove theoretical results concerning the properties of
the hat matrix generated at each iteration of MPA. To this end,
we review MPA in Sec. 2 , then present in Sec. 3 the outcome
of our theoretical analysis. One important result is an upper
bound on the increase of df from the m-th to the (m + 1)-th
iteration (m ≥ 1). As part of the analysis we show that, in
general, the hat matrix is not idempotent, which means that it
is not a projector. Based on the properties of the hat matrix,
we propose in Sec. 4 novel IT criteria for selecting the number
of iterations. All of them are obtained by modifying criteria
designed for variable selection in the classical linear model.
We conduct a simulation study for assessing the performance
of the novel criteria, and the results are reported in Sec. 5.
Sec. 6 concludes the paper.

2. MATCHING PURSUIT ALGORITHM

Notation: We employ bold letters to denote both vectors and
matrices; upper case letters are used only for matrices. I de-
notes the identity matrix of appropriate size, while 0 denotes
the vector/matrix for which all the entries are equal to zero.
The Euclidean norm of a vector v is ||v||. For an arbitrary
matrix M, M> is the transpose matrix and Sp(M) denotes
the linear subspace spanned by the columns of M.
Algorithm: Assume that the response vector y = [y1, . . . , yn]

>

is given, as well as the matrix X = [x1 · · ·xpn ] of potential
predictors for y. The number of predictors, pn, can grow
very fast when n increases (see the discussion in [8, Sec. 3]).
MPA can be useful for selecting the most significant predic-
tors which should be included in the linear model for y. If
Xβ̂ is the fitted linear model, then all non-zero entries of β̂
correspond to the selected predictors. The residuals are given
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by e = y −Xβ̂. In the initialization phase of the algorithm,
β̂ is set to 0. At each iteration, MPA selects the column of X
leading to the largest reduction of the residual sum of squares.
Assume that, at the j-th step of the algorithm, the column of
X indexed by s(j) is selected, where 1 ≤ s(j) ≤ pn. Then,
only the s(j)-th entry of β̂ is updated by using the formula
β̂s(j) ← β̂s(j) + ν(x>

s(j)xs(j))
−1x>

s(j)e.
The parameter ν ∈ (0, 1] is the step size, also known as

the shrinkage parameter. Note that all other entries of β̂ re-
main unchanged. This is a major difference from Orthogonal
Matching Pursuit (OMP) as OMP re-estimates all the entries
of the vector of linear parameters at each step of the algo-
rithm. The two algorithms have been already compared in [2,
Sec. 12.7.1.1].

In general, the value of the shrinkage parameter in MPA is
taken to be small, for example, ν = 0.1. This is justified in [2,
Sec. 12.6.2.1] by emphasizing the relationship between MPA
and the well-known Lasso algorithm [9]. Another peculiarity
of MPA is that the same predictor can be selected not only
once, but multiple times during the iterations of the algorithm
even when ν = 1. This makes it difficult to evaluate the
complexity of the linear model produced at each step of MPA.
We discuss this aspect below.
Hat matrix: Let ŷm = Xβ̂m be the estimate of y obtained
after the m-th step of the algorithm. We denote by Bm the
linear operator, equivalently the hat-matrix, which maps y to
ŷm: ŷm = Bmy. Recalling that xs(j) denotes the predictor
selected at the j-th iteration of MPA, Bm is expressed as [8]:

Bm = I−Am, where (1)
Am =

(
I− νPs(m)

)
· · ·

(
I− νPs(1)

)
, (2)

Ps(j) = x̄s(j)x̄
>
s(j) and x̄s(j) = xs(j)/||xs(j)|| for 1 ≤ j ≤

m. It can be shown by mathematical induction that

Am =
m∑

k=0

Sm,k, where Sm,0 = I (3)

and we have for 1 ≤ k ≤ m:

Sm,k = (−ν)k
∑

m≥jk>jk−1>···>j1≥1

Ps(jk)Ps(jk−1) · · ·Ps(j1). (4)

The matrix Bm is important in evaluating the complexity
of the linear model produced at the m-th step. More precisely,
the degrees of freedom for the fitted model are estimated by
dfm = tr(Bm). This formula has been used, for example, in
[6]. It follows from Stein’s theory on unbiased risk estimation
[10] that for the case when the design matrix is fixed and the
residuals are i.i.d. normal, with zero-mean and known vari-
ance σ2, df =

∑n
j=1 Cov(ŷj , yj)/σ

2 [11, 12]. It is a simple
exercise to demonstrate that this expression equals the trace
of the hat matrix (see [2, Eq. (2.34)]).

In practice, the user chooses an upper bound, mub, for the
number of iterations. It is often recommended to use an IT

criterion for selecting the best model from the mub different
models which were produced during these iterations. Because
of the particularities of MPA, the IT criteria which have been
previously derived for the classical linear model cannot be ap-
plied in their original form [8]. The modifications of the cri-
teria are discussed in Sec. 4. They are based on the properties
of the hat matrix outlined in the next section.

3. SOME PROPERTIES OF THE HAT MATRIX

We give some theoretical results whose proofs are detailed in
the supplemental material [13]. Firstly we show that, at each
step of the MPA, the increase of df is at most ν. This can be
recast as a property of the hat matrix:

Proposition 3.1. For m ≥ 1, we have

tr(Bm+1)− tr(Bm) ≤ ν. (5)

The equality holds if and only if x̄>
s(m+1)x̄s(j) = 0 for all

j ∈ {1, . . . ,m}.
Remark 1. For all m ≥ 1, one can show that tr(Bm+1) −
tr(Bm) ≥ −ν by using Result 3 and inequality (3) from [13].
In practice, it is observed that tr(Bm+1) − tr(Bm) can be
negative, hence is not guaranteed that df increases at each
iteration of MPA.

Bm is not, in general, a projection matrix. As a square
matrix is a projector if and only if it is idempotent (see, for
example, [14, Th. 2.1]), we check when B2

m = Bm.

Proposition 3.2. (i) If ν ∈ (0, 1), then Bm is not idempotent
for all m ≥ 1.
(ii) Consider the following conditions: (c1) m ≥ 2; (c2)
ν = 1; (c3) x̄

>
s(i)x̄s(j) = 0 for all i, j ∈ {1, . . . ,m} with

property i > j. If all these conditions are satisfied, then Bm

is idempotent and symmetric.

Remark 2. The second part of the proposition above can
be understood in connection with the result from [14, p. 44]
which says that a sufficient condition for (see (1)-(2))

Bm =
m∑

k=1

(−1)k+1
∑

m≥jk>jk−1>···>j1≥1

Ps(jk)Ps(jk−1) · · ·Ps(j1)

to be the orthogonal projector onto Sp
(
x̄s(1), . . . , x̄s(m)

)
is:

Ps(i)Ps(j) = Ps(j)Ps(i) for all i, j ∈ {1, . . . ,m}. (6)

Remark 3. In order for (c3) to be fulfilled, we need to have
m ≤ n.

At the end of this analysis, we prove the following result:

Proposition 3.3. (i) If ν ∈ (0, 1), then A>
mAm+B>

mBm 6= I
for all m ≥ 1.
(ii) If the conditions (c1) − (c3) from Prop. 3.2(ii) are satis-
fied, then A>

mAm +B>
mBm = I.

Remark 4. At the m-th step of MPA, we obtain the estimate
ŷm = Bmy and the error em = y−ŷm = Amy. In general,
||ŷm||2 + ||em||2 6= ||y||2.
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4. MODIFICATIONS OF IT CRITERIA

Model selection rules like the Akaike Information Criterion
(AIC) [15] or the Bayesian Information Criterion (BIC) [16]
depend on the norm of the vector of residuals and the number
of parameters. When they are used in conjunction with MPA,
the only alteration in their formula replaces the number of
parameters with df. It is more difficult to modify the criteria
in which ||ŷ|| appears explicitly.

Consider the classical linear regression problem for which
the additive noise is i.i.d. zero-mean normal, with unknown
variance. Let β̂γ denote the estimated vector of linear param-
eters for a model whose set of regressor variables is γ. We de-
note the cardinality of γ by |γ|, and assume that |γ| > 0. This
means that we exclude the possibility that y is pure noise. The
definition of stochastic complexity (SC) is [17]:

SC(y; γ) = n ln
||eγ ||2

n

+|γ| ln ||ŷγ ||2/|γ|
||eγ ||2/(n− |γ|)

+ ln
|γ|

(n− |γ|)n−1
, (7)

where ŷγ = Xβ̂γ , eγ = y − ŷγ and ln(·) is the natural
logarithm. The “best” model is the one which minimizes
SC(y; γ).

A similar criterion, called generalized Minimum Descrip-
tion Length (gMDL), was introduced in [18] :

gMDL(y; γ) =

n
2 ln

||eγ ||2
n−|γ| +

|γ|
2 ln

||ŷγ ||2/|γ|
||eγ ||2/(n−|γ|) + lnn, if

||ŷγ ||2
||y||2 ≥

|γ|
n

n
2 ln ||y2||

n + 1
2 lnn, otherwise

(8)

Reference [19] reports the results of an empirical study on
model selection for high-dimensional linear models, where
gMDL is used together with the forward selection algorithm
(FSA). A comparison of FSA and OMP can be found in [2,
Sec. 12.7.1.1]. It is mentioned in [20, Sec. 5.4] that gMDL
can be used for selecting the models produced at various steps
of MPA.

Before discussing the modification of the two criteria, we
mention that the superiority of SC and gMDL to other selec-
tion rules comes from the term |γ| lnFγ = |γ| ln ||ŷγ ||2/|γ|

||eγ ||2/(n−|γ|)
[21, 22]. One remarkable property is that Fγ is F -distributed.

For adapting SC and gMDL to the context of MPA, we
propose two different sets of modifications:

|γ| 7→ dfm, ||eγ ||2 7→ ||em||2, ||ŷγ ||2 7→ ||ŷm||2, (9)
|γ| 7→ dfm, ||eγ ||2 7→ ||em||2, ||ŷγ ||2 7→ ||y||2 − ||em||2. (10)

The modifications presented in (10) are suggested by the
result of Prop. 3.3. Even if we apply the modifications in (9),
the resulting Fm = ||ŷm||2/dfm

||em||2/(n−dfm) is not F -distributed be-
cause Bm is not idempotent. This can be seen from the con-
ditions of a well-known theorem, which can be found, for ex-
ample, in [22, Th. A1]. Use of an approximate F -distribution

for the terms of this type, when the hat matrix is not idem-
potent, is addressed in [5]. Their work is of special interest
because it is done in the context of modifying the AIC selec-
tion rule for the case when the hat matrix is neither idempo-
tent nor symmetric. The resulting criterion is dubbed AICC1

.
Interestingly enough, two other criteria are proposed in [5]:
AICC0 , which is difficult to evaluate because it involves some
integrals and AICC , which is very popular in the statistical
literature:

AICC(y;m) = ln
||em||2

n
+

1 + dfm/n

1− (dfm + 2)/n
.

AICC is derived by simply replacing the number of linear pa-
rameters with dfm in the formula of bias-corrected AIC from
[23]. This encourages us to apply the modifications in (9) and
(10) to both SC and gMDL.

Another criterion which has been modified by using df
instead of the number of linear parameters is BIC [2, Sec.
2.11]:

BIC(y;m) = n ln
||em||2

n
+ dfm lnn. (11)

The expression above can be further modified by adding one
more term:

EBIC(y;m) = BIC(y;m) + 2ζ ln

(
pn
sm

)
, (12)

where ζ ∈ (0, 1] and sm is the number of non-zero entries of
β̂m. This Extended Bayesian Information Criterion (EBIC)
is inspired by the work in [24]. The additional term repre-
sents the cost of listing the indexes of variables included in
the model. It can be neglected when pn is small, but becomes
important when the original set of predictors is large. The
only difference between the formula in (12) and the one in
[24, p. 761] stems from the second term in (11): dfm lnn
instead of sm lnn.

In the case of the classical linear model for which the
number of predictors (pn) is large, the authors of [25] pro-

posed to add the term 2 ln

(
pn
|γ|

)
to the expression of SC in

(7). This suggests that, in our case, the criteria in (7)-(8) can
be further modified as follows:

ESCalt(y;m) = SCalt(y;m) + 2ζ ln

(
pn
sm

)
, (13)

EgMDLalt(y;m) = gMDLalt(y;m) + ζ ln

(
pn
sm

)
, (14)

where alt = 1, 2. The notation SC1(·) is employed for the
criterion which results after applying the alteration in (9) to
the formula in (7). Similarly, SC2(·) is the criterion produced
by altering (7) with (10). The same notional conventions are
applied for gMDLalt(·).
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It is clear that a larger value for ζ in (13)-(14) reduces the
probability of including spurious predictors in the model, but
at the same time might diminish the probability of selecting
the “true” predictors. As we know from Prop. 3.1 that dfm ≤
mν, it is reasonable to impose the condition that ζ ∈ (0, ν].
In our experiments, we take ζ = ν.

5. NUMERICAL RESULTS

The experimental settings are similar to those in [4, Sec. 3.3];
the sample size is n = 100, and the dictionary is complete
(pn = 100). The entries of the n × pn matrix which repre-
sents the dictionary are i.i.d. standard normal random vari-
ables. The response vector is given by y = Xβ + ε, where
the entries of β are chosen according to four different mod-
els: Model 1 (low-dimensional): β1 = β2 = β3 = 1/3
and βq = 0 for 4 ≤ q ≤ pn; Model 2 (high-dimensional,
small equal coefficients): βq = p−1

n for 1 ≤ q ≤ pn; Model
3 (high-dimensional, decaying coefficients): βq = q−1 for
1 ≤ q ≤ pn; Model 4 (high-dimensional, slowly decaying
coefficients): βq = q−1/2 for 1 ≤ q ≤ pn.

The ε-vector is obtained by multiplying with κ/ς a col-
umn vector ε̃ whose n entries are i.i.d. standard normal ran-

dom variables. Note that κ =

[
Var(Xβ)

Var(ε̃)

]1/2
and ς is a pa-

rameter which controls the signal-to-noise ratio (SNR). Fol-
lowing [4, Sec. 3.3], we take ς2 = 8 for high SNR and ς2 =
0.2 for low SNR. For each model and for each value of ς2, we
simulate NTR = 100 data sets. In order to investigate how the
greediness of MPA impacts on the accuracy of the estimation,
we use for each data set a large and a small value for ν (0.95
and 0.1). The vector y and the columns of X are centred. Ad-
ditionally, the columns of X are standardised such that all the
diagonal entries of (X>X)/n are equal to one.

In all cases, the upper bound on the number of iterations is
mub = 20000. Because of the way in which the expression of
AICC depends on df, we end the iterations before df equals
n− 2. An additional rule is applied such that MPA is stopped
after the number of distinct selected predictors becomes equal
to pn.

For testing the predictive power of each IT criterion, we
use the same method as in [4, Sec. 3.3]: For each trial, the
same algorithm as the one used to generate the dictionary is
applied in order to produce a matrix Xout,r whose size is

(10n) × pn. If β̂
ITC

r is the vector of linear parameters cor-
responding to the model selected by a particular IT criterion,
in trial r, then we compute the mean integrated square error
as follows [4, Sec. 3.3]:

MISE =

∑NTR

r=1

∥∥∥Xout,rβ −Xout,rβ̂
ITC

r

∥∥∥2
(10n)×NTR

, (15)

where β is defined for each model in the description above.
Note that, for all 1 ≤ r ≤ NTR, the columns of Xout,r are

centred. We show in Table 1 the values of MISE, computed
for the IT criteria which are evaluated in our study. We have
also conducted experiments for which n = 20 and all other
settings are the same as above. The full results of these exper-
iments are reported in [13, Table 1].

6. FINAL REMARKS

The empirical results confirm what has already been pointed
out previously: We recommend choosing a small value for
ν, especially when SNR is low. We made efforts to follow
as accurately as possible the experimental settings from [4].
The major difference between it and our implementation is
the use of IT criteria instead of cross-validation. For Models
1-3, our results are better or comparable with those reported
in [4], but are worse in the case of the high-dimensional model
with slowly decaying coefficients. However, cross-validation
is much more computationally intensive than model selection
based on IT criteria.

We can draw the following conclusions about the use of
various IT criteria: (a) Applying the alteration in (9) to SC
leads to similar results as in the case when SC is altered with
(10). The same is true for gMDL. In general, the variants
of gMDL behave similarly to the corresponding variants of
SC; (b) The most intriguing alteration is the one which adds
the weighted logarithm of the binomial coefficient to the ex-
pressions of BIC(y;m), SCalt(y;m) and gMDLalt(y;m):
In some cases, it deteriorates the results because it does not
act as a penalty term when the number of selected predictors
is greater than pn/2; (c) Some of the altered variants of SC
and gMDL are superior to AICC when n = 20 ( see Table 1
in the supplemental material).

All experiments can be reproduced by using the code from
https://www.stat.auckland.ac.nz/%7Ecgiu216/.
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