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Abstract—Given a collection of M experimentally measured
subspaces, and a model-based subspace, this paper addresses the
problem of finding a subspace that approximates the collection,
under the constraint that it intersects the model-based subspace
in a predetermined number of dimensions. This constrained
subspace estimation (CSE) problem arises in applications such
as beamforming, where the model-based subspace encodes prior
information about the direction-of-arrival of some sources im-
pinging on the array. In this paper, we formulate the constrained
subspace estimation (CSE) problem, and present an approxima-
tion based on a semidefinite relaxation (SDR) of this non-convex
problem. The performance of the proposed CSE algorithm is
demonstrated via numerical simulation, and its application to
beamforming is also discussed.

Index Terms—Subspace averaging, Grassmann manifold, con-
vex optimization, semidefinite relaxation.

I. INTRODUCTION

Input data in many signal processing applications admit
a subspace representation, i.e., the intrinsic dimension of
the objects of interest is much smaller than the dimension
of the ambient space in which they live. Examples include
image and video recognition where a single object under
different pose or illumination conditions can be modeled as
a subspace [1], or pattern recognition applications in which
features obtained after a dimensionality reduction stage such
as principal component analysis (PCA) are commonly used
[2]. In other signal analysis problems, one has to cope with
the effects of the multiplicity of appearances of objects under
different warpings or elastic deformations, where an invariant
representation of the signal is shown to have the form of a
subspace [3].

A central problem in these applications is to estimate an av-
erage subspace from a collection of experimentally measured
subspaces. In our previous work [4], [5], we have presented a
solution for this subspace averaging problem that minimizes an
extrinsic mean-squared error, defined by the squared Frobenius
norm between projection matrices. In addition, the solution in
[4] automatically returns the dimension of the optimal average
subspace. Variations on this problem have been considered
in [6] and [7]. An application to image classification that
first estimates the mean representation of the object manifold
by means of the proposed subspace averaging technique has
recently been described in [8].

In this paper, we extend our previous work and consider
the problem of finding a subspace that best approximates
the collection of subspaces according to an extrinsic distance
measure and, at the same time, intersects a model-based
subspace in a given number of dimensions. The model-based
subspace can be determined from the physical process that
generates the measurements, or from prior information about
the problem. For instance, in a beamforming problem [9]
the model-based subspace might encode prior information
about the angle of arrival of a source impinging on a linear
array of antennas. When the direction-of-arrival (DoA) of the
impinging source is not perfectly known because of mismatch
errors due to imperfect array calibration or local scattering
problems, this prior information can be encoded in the form
of a low-dimensional subspace in which the incident signal is
expected to lie.

The rest of the paper is organized as follows: in Section II,
we provide a brief review of the subspace averaging technique.
Section III formulates the non-convex constrained subspace
estimation (CSE) problem, and presents an approximate so-
lution based on semidefinite relaxation (SDR). In Section
IV we illustrate the performance of the CSE algorithm by
means of numerical simulations, and present an application to
beamforming as a motivating example. The main conclusions
are summarized in Section V.

Notation The notation G (d,n) will be used to represent the
complex Grassmann manifold whose points parameterize all
subspaces of dimension d in an n-dimensional ambient space.
We use �A� ∈ G (d,n) to denote a point (subspace) on the
Grassmann manifold, whereas A is used to denote a matrix
whose columns form a unitary basis for that subspace. The
superscripts (⋅)T and (⋅)H denote transpose and Hermitian,
respectively. The trace, rank, and Frobenius norm of a matrix
B will be denoted, respectively, as tr(B), rank(B), and��B��F . Finally, In denotes the n × n identity matrix.

II. SUBSPACE AVERAGING

Given a collection of experimentally measured subspaces�Vm� ∈ G (qm, n), m = 1, . . . ,M ; a classical problem in sta-
tistical signal processing is that of finding an average subspace
of dimension ds, �Vs� ∈ G (ds, n), that “best approximates”
the collection of subspaces according to an extrinsic distance
measure.
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The extrinsic distance metric between two subspaces, �Vs�
and �Vm�, is defined as the Frobenius norm of the difference
between the respective projection matrices [10], [5]

d (�Vs� , �Vm�) = �Ps −Pm�F , (1)

where Ps = VsV
H
s and Pm = VmVH

m. Notice that the two
subspaces can have different dimensions. Actually, writing
the squared extrinsic distance in terms of the cosines of the
principal angles between the two subspaces it is easy to show
that [11]

�Ps −Pm�2F = qm + qs − 2
min(qm,qs)�

r=1 cos

2(✓r). (2)

In our previous work [4], [5], we showed that, given the
collection {�Vm�}Mm=1, the average or central subspace of
dimension ds maximizes the cost function

max

Vs∈S(n,ds) tr

�VH
s PVs� , (3)

where S(n, ds) denotes the complex Stiefel manifold of or-
thonormal ds-frames in Cn, and P is the average of projection
matrices, defined as

P = 1

M

M�
m=1Pm. (4)

This average is not, itself, a projection matrix. It is known
that the solution of (3) is given by any unitary matrix whose
column space is the same as the subspace spanned by the
ds principal eigenvectors of P [12], [13]. Moreover, in [4] it
was shown that the optimal choice of ds is determined by the
index of the last eigenvalue of P that exceeds 1�2, a result
that is identical to a finding in [14] for the unrelated problem
of constructing low-dimensional time-frequency projections.

III. CONSTRAINED SUBSPACE ESTIMATION

In some applications, in addition to the collection of
measured subspaces we might have a model-based subspace�W� of dimension dw that is used to constrain the sought
solution by requiring the solution to intersect �W� in di
dimensions. This model-based subspace can be determined
from the physical process that generates the measurements,
or from prior information about the problem. As a motivating
example, consider for instance a beamforming problem in
which one of the impinging signals is known to lie in a given
subspace of dimension dw (as we will see in Section IV this
model-based subspace can be determined from the DoA of the
estimated source and the presumed mismatch error).

Problem Statement. Our problem can be stated as fol-
lows: given a collection of experimentally measured subspaces�Vm� ∈ G (qm, n), for m = 1, . . . ,M , and a model-based
subspace �W� ∈ G (dw, n), find an average subspace �Vs� of
dimension ds which maximizes the cost function of (3), under
the constraint that it intersects the model-based subspace in
di dimensions. To avoid trivial cases where the unconstrained
solution is optimal, we assume ds + dw ≤ n + di.

From the unconstrained subspace average described in Sec-
tion II, it is clear that the information from the collection of
subspaces can be summarized through the average projection
matrix P. Therefore, the optimization problem we want to
solve can be written as

maximize
Vs∈Cn×ds tr

�VH
s PVs�

subject to VH
s Vs = Ids ,

dim (�Vs���W�) ≥ di.
(5)

The solution can be parameterized as follows

Vs = � W W⊥ � � A B
0

� , (6)

where W ∈ Cn×dw is a matrix whose columns form a unitary
basis for the model-based subspace and W⊥ ∈ Cn×(n−dw) is
a unitary basis for its orthogonal complement. The matrices
A ∈ Cdw×di and B ∈ Cn×(ds−di) are unitary slices to be
determined during the optimization procedure. It is clear that
any matrix that can be expressed as (6) determines a subspace
of dimension ds that intersects �W� in at least di dimensions.

Let us define
W = � W W⊥ � ,

and
X =WH

PW = � X11 X12

X21 X22
� ,

where X11 is a dw×dw matrix. With these definitions, problem
(5) can be re-phrased as

maximize
A,B

tr

�AHX11A� + tr �BHXB�
subject to AHA = Idi ,

BHB = Ids−di ,�AH �0�B = 0.
(7)

Now, taking into account that

tr(AHX11A) = tr(X11AAH) = tr(X11PA)
where PA is a projection matrix defined by

0 � PA � Idw ,

tr(PA) = di,
rank(PA) = di,

we can rewrite (7) as

maximize
PA,PB

tr

�X11PA� + tr �XPB�
subject to 0 � PA � Idw , 0 � PB � Idn ,

tr(PA) = di tr(PB) = ds − di,
rank(PA) = di rank(PB) = ds − di,
� PA 0

0 0
� +PB � In,

(8)
where the last constraint enforces the orthogonality between
the subspaces spanned by the basis [AT �0]T and B.
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Except for the rank constraints, problem (8) is convex.
Therefore we can use the idea of semidefinite relaxation (SDR)
[15] and solve the following convex relaxation (eliminating
also some redundant constraints)

maximize
PA,PB

tr

�X11PA� + tr �XPB�
subject to PA � 0, PB � 0,

tr(PA) = di, tr(PB) = ds − di,
� PA 0

0 0
� +PB � In.

(9)

To solve problem (9) we used CVX, a package for specify-
ing and solving convex programs [16]. When the relaxation is
tight, the solution of (9) returns projection matrices PA and
PB of ranks di and ds − di, and the global optimum satisfies
all constraints; otherwise, we need some approximation. There
are several ways proposed in the literature to extract solutions
with the desired ranks when the problem is not tight, such
as Gaussian randomization or rank reduction procedures (also
called purification methods) [17]. These methods, however,
incur some computational cost. Therefore, in the following
subsection we propose an approximate solution to be applied
when the problem is not tight.

Approximate linear algebraic solution to the SDR. In
the convex relaxation, the coefficient matrices [AT �0]T and
B are estimated simultaneously. In fact, problem (9) can be
viewed as two max-trace problems which are coupled through
the constraints. The approximation proceeds in two steps:
first, it obtains the part of the solution that intersects �W�
in di dimensions, and second, it completes the subspace with
the remaining ds − di dimensions which are extracted from
the orthogonal complement of the di-dimensional subspace
obtained in the first step. In the proposed approximate solution,
the two subspaces are obtained sequentially by solving two
separate problems.

1) Obtain a di-dimensional subspace belonging to the
model-based subspace �W�. To this end solve

maximize
A∈Cdw×di tr

�AHWHPWA�
subject to AHA = Idi

(10)

whose solution, A∗, is given by any unitary matrix whose
column space is the same as the subspace spanned by the
di principal eigenvectors of PW =WHPW. Then, the
basis for WA is

F =WA∗
2) Now, let P⊥F = In − FFH be the projection onto the

orthogonal complement of F. Similarly to the previous
step, a basis for the remaining portion of the subspace that
lives in the space spanned by the columns of W⊥ is given
by the ds−di main eigenvectors of the (P⊥F )HPP⊥F . We
denote this n × (ds − di) matrix as G.

3) A unitary basis for the constrained subspace is finally
given by

Vs = � F G � . (11)

Algorithm 1: Constrained Subspace Estimation (CSE)
algorithm.

Input: Average of projections P, unitary basis for the
model-based subspace W, ds, dw, di

Output: Unitary basis for the average subspace Vs such
that dim (�Vs�� �W�) = di

Initialize: Generate W = � W W⊥ � and
X =WH

PW
Solve convex problem (9): Output PA and PB

if Relaxation is tight then
1.- Find an dw × di unitary basis for PA: F1

2.- Find an n × (ds − di) unitary basis for PB : F2

3.- Find solution as

Vs = � F1

0(n−dw)×di

F2 �

else
1.- Solve problem (10) and find F =WA∗
2.- Find a unitary basis G formed by the (ds − di)
main eigenvectors of (P⊥F )HPP⊥F
3.- Find solution as Vs = � F G �

Finally, the proposed Constrained Subspace Estimation
(CSE) algorithm is summarized in Algorithm 1.

IV. SIMULATION RESULTS

Example 1. We generate M perturbed versions of a central
subspace �V0� ∈ G(ds, n), as follows:

1) Generate a unitary basis for the model-based subspace�W� ∈ G(dw, n).
2) Generate a unitary basis for the central subspace, �V0� ∈

G(ds, n), taking at random di dimensions from W and
ds − di dimensions from W⊥.

3) Generate a collection of M matrices of dimensions n×n
as follows:

Gm = [V0 �0] + �Zm, m = 1, . . . ,M (12)

where V0 ∈ Cn×ds is a unitary basis for �V0�, and
Zm ∈ Cn×n is a matrix whose entries are independent
and identically distributed complex Gaussian random
variables with zero mean and variance 1�n. The value of
� determines the signal-to-noise-ratio, which is defined
as SNR = 10 log10 � ds

n�2 �. An orthogonal basis for the
m-th subspace, Vm, is then constructed from the first ds
orthonormal vectors of the QR decomposition of Gm.

In words, the basis of each measured subspace Vm is an
additively perturbed version of the basis of the signal subspace
V0, which intersects �W� ∈ G(dw, n) in di dimensions.
On the other hand, the SNR measures the spreading of the
subspaces: i.e., a low SNR means that the subspaces are very
far from each other, whereas a high SNR means that the
subspaces are tightly clustered around �V0�.
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Fig. 1. Extrinsic distance between the true subspace and the estimate provided
by the UNC and the CSE algorithms when the ambient space dimension varies
(n = 20 and n = 60) while other parameters are kept constant (ds = dw = 8,
di = 4 and M = 10 subspaces).

For the first example, we have considered a collection
of M = 10 subspaces in G(8,20). The solution and the
model-based subspaces both have dimension 8, and they are
constrained to intersect in di = 4 dimensions. As a figure of
merit we compute the extrinsic distance between the solution
Vs and the true V0 defined in (1). For comparison, we also
compute the results of the unconstrained average subspace
(cf. Section II) which is denoted here as UNC. Fig. 1 shows
the average extrinsic distance in logarithmic scale estimated
from 100 independent Monte Carlo simulations for the UNC
method (in dashed line) and proposed CSE algorithm (in solid
line) for two different values of the ambient space dimension.
As we can observe, when the subspaces are spread out (i.e.,
for low SNR values) the CSE algorithm, which enforces the
intersection constraint with the model-based subspace in the
required number of dimensions, provides a more accurate
estimate. Keeping fixed the rest of the parameters, the estimate
for both methods improves when the ambient space dimension
grows.

Example 2. In the second example, we analyze the tightness
of the semidefinite relaxation. In general, the tightness depends
on a variety of parameters such as the ambient dimension, the
number of subspaces, or the SNR. As an example, Fig. 2 shows
the tightness estimated from 100 independent Monte Carlo
simulations when M = 100, n = 20, dw = 6 and ds = 6. We
can see that for high SNRs (all subspaces are well clustered)
the problem is tight with very high probability.

Application to beamforming. Let us consider an array
of n sensors and K uncorrelated sources impinging on the
array. Assuming the standard AWG model for the noise, the
theoretical covariance matrix of the array output vector has
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Fig. 2. Tightness for the SD relaxation (n = 20, ds = 6, dw = 6 and
M = 100). The dimension of the intersection is di = 3 or di = 1.

the following form

R = K�
k=1

�2
ka(✓k)a(✓k)H + �2I,

where �2
k are the powers of the incident signals, and a(✓k)

are the steering vectors.
In classical beamforming problems the goal is to estimate

the angle or direction-of-arrival (DoA) of every impinging
source. In our problem, however, we do not look for accurate
DoA estimates, but only for a good approximation (in terms
of captured signal power) of the span of the corresponding
steering vectors. Suppose now that for a given source (without
loss of generality we take this to be the first source) we
have a previous estimate of the DoA with a possible angle
mismatch error up to � degrees. Therefore, the true DoA
belongs to the interval ✓1 ∈ ⌦ = [ˆ✓1 −�, ˆ✓1 +�]. This prior
information can be approximated in the form of a model-
based subspace, �W� ∈ G(dw, n), which contains most of the
energy of all steering vectors with DoAs in ⌦. The solution
for the model-based subspace is given by the first dw discrete
prolate spheroidal wave functions [18], and the corresponding
dw-dimensional Slepian subspace [19], [20]. With this prior
information, the problem amounts to estimating a subspace�Vs� ∈ G(K,n) of dimension ds = K that intersects �W� in
di = 1 dimension. As the average of projection matrices we
use P = ˆR� tr( ˆR), where ˆR is the sample covariance matrix
estimated from M snapshots.

To evaluate the performance of the subspace estimation
algorithms, we use the relative efficiency defined as

⌘ = 1 − �P⊥V V0�2F , (13)

where V0 is a unitary basis for the subspace spanned by the
K true steering vectors, and P⊥V is the projection onto the
orthogonal complement of the estimated subspace. Note that
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Fig. 3. Relative efficiency versus the SNR for the CSE algorithm and the
unconstrained solution (n = 20, dw = 3, ds = 2, di = 1).

when ⌘ = 1 the estimated subspace is perfectly aligned with
the array manifold vectors.

We consider a scenario with n = 20 antenna elements, K = 2
sources with equal power, and M = 50 snapshots. We assume
that an estimate of ✓1 with a mismatch error ±� is available,
and from this prior information we obtain a model-based
subspace of dimension dw = 3. The CSE algorithm estimates
a subspace of dimension ds = 2 that intersects �W� in di = 1
dimension. For comparison, we extract the 2-dimensional
signal subspace of the sample covariance matrix (labeled
as UNC in the figure). Fig. 3 shows the relative efficiency
versus the SNR for two different values of the mismatch
error. For low SNR values, the additional information provided
by the model-based subspace provides a significant boost in
performance even for very large values of the mismatch error.
However, for high SNRs, the constrained solution is only better
for small values of the mismatch error, since otherwise the
prior information provided by the model-based subspace is not
reliable and forcing an intersection can even be detrimental.

V. CONCLUSIONS

Finding an average subspace that intersects another sub-
space in a given number of dimensions is an interesting
optimization problem that arises in a number of applications.
In this paper, we have used semidefinite relaxation techniques
to form a convex relaxation of this problem, and then proposed
the Constrained Subspace Estimation (CSE) algorithm. Some
preliminary results in a beamforming problem indicate that,
when the model-based subspace provides reliable prior infor-
mation about the solution, the CSE algorithm outperforms the
unconstrained estimate. Future work will include the analysis
of the tightness of the relaxation, and a more detailed perfor-
mance evaluation of the CSE algorithm in several application
domains.

ACKNOWLEDGMENT

This work has been supported by the Ministerio de
Economı́a, Industria y Competitividad (MINECO) of Spain,
and AEI/FEDER funds of the E.U., under grants TEC2013-
47141-C4-R (RACHEL), TEC2016-75067-C4-4-R (CAR-
MEN) and TEC2016-81900-REDT (KERMES), and by the
National Science Foundation under Grant No. IIS-1633830.

REFERENCES

[1] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa, “Statis-
tical computations on Grassmann and Stiefel manifolds for image and
video-based recognition,,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 33, no. 11, pp. 2273–2286, Nov. 2011.
[2] C. J. C. Burges, “Dimension reduction: a guided tour,” Foundations and

Trends in Machine Learning, vol. 2, no. 4, pp. 275–365, 2009.
[3] R. R. Hagege and J. M. Francos, “Universal manifold embedding for

geometrically deformed functions,” IEEE Trans. Inf. Theory, vol. 62,
no. 6, pp. 3676–3684, Jun. 2016.

[4] I. Santamaria, L. L. Scharf, C. Peterson, M. Kirby, and J. Francos, “An
order fitting rule for optimal subspace averaging,” in IEEE Statistical

Signal Processing Workshop (SSP), 2016.
[5] T. Marrinan, J. R. Beveridge, B. Draper, M. Kirby, and C. Peterson,

“Finding the subspace mean or median to fit your need,” in Proc. of

Computer Vision and Pattern Recognition (CVPR), 2014.
[6] A. N. Schwickerath, Linear models, signal detection, and the Grass-

mannian manifold. Ph.D. Thesis, Colorado State University, CO, USA,
2014.

[7] T. P. Marrinan, Grassmann, Flag, and Schubert Varieties in Applications.
Ph.D. Thesis, Colorado State University, CO, USA, 2016.

[8] Z. Yavo, J. Francos, I. Santamaria, and L. L. Scharf, “Estimating the
mean manifold of a deformable object from noisy observations,” in
IEEE Image Video and Multidimensional Signal Processing Workshop

(IVMSP), 2016.
[9] H. Krim and M. Viberg, “Two decades of array signal processing re-

search: the parametric approach,” IEEE Signal Proc. Magazine, vol. 13,
no. 4, pp. 67–94, Aug. 1996.

[10] A. Srivastava and E. Klassen, “Monte Carlo extrinsic estimators of
manifold-valued parameters,” IEEE Trans. Signal Process., vol. 50,
no. 2, pp. 299–308, Aug. 2002.

[11] A. Edelman, T. Arias, and S. T. Smith, “The geometry of algorithms
with orthogonality constraints,” SIAM J. Matrix Anal. Appl., vol. 20,
no. 2, pp. 303–353, 1998.

[12] J. H. Manton, “Optimization algorithms exploiting unitary constraints,”
IEEE Trans. Signal Process., vol. 50, no. 3, pp. 635–650, Mar. 2002.

[13] S. Shahbazpanahi, A. B. Gershman, and J. H. Manton, “Closed-form
blind MIMO channel estimation for orthogonal spacetime block codes,”
IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4506–4517, Dec. 2005.

[14] F. Hlawatsch and W. Kozek, “Time-frequency projection filters and time-
frequency signal expansions,” IEEE Trans. Signal Process., vol. 42,
no. 12, pp. 3321–3334, Dec. 1994.

[15] Z. Q. Luo, W. K. Ma, A. M. So, and S. Zhang, “Semidefinite relaxation
of quadratic optimization problems,” IEEE Signal Proc. Magazine,
vol. 27, no. 3, pp. 20–34, May 2010.

[16] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex

programming, version 2.0 beta. http://cvxr.com/cvx, 2013.
[17] Y. Huang and D. P. Palomar, “Randomized algorithms for optimal

solutions of double-sided QCQP with applications in signal processing,”
IEEE Trans. Signal Process., vol. 62, no. 5, pp. 1093–1108, Mar. 2014.

[18] D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and
uncertainty-v: The discrete case,” Bell Syst. Tech. J., pp. 1371–1430,
1978.

[19] O. Besson, L. L. Scharf, and F. Vincent, “Matched direction detectors
and estimators for array processing with subspace steering vector
uncertainties,” IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4453–
4463, Dec. 2005.

[20] A. Pezeshki, B. D. Van Veen, L. L. Scharf, H. Cox, and M. L. Norden-
vaad, “Eigenvalue beamforming using multirank MVDR beamformer
and subspace selection,” IEEE Trans. Signal Process., vol. 56, no. 5,
pp. 1954–1966, May 2008.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1244


