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Abstract—In this paper we analyze the use of tight frames for
the problem of localizing a source from noisy time-difference of
arrival measurements. Based on the Fisher information matrix,
we show that positioning the sensor network according to a tight
frame that also obeys some internal symmetries provides the best
average localization accuracy. We connect our result to previous
approaches from the literature and show experimentally that
near optimal accuracy can also be provided by random tight
frames. We also make the assumption that the sensors are not
fixed but placed on mobile units and we study the problem of
bringing them to a tight configuration with the minimum energy
consumption. Although our results hold for any dimension, for
simplicity of exposition, the numerical experiments depicted are
in the two dimensional case.

Index Terms—time-difference of arrival localization, Fisher
information matrix, finite frames, tight frames.

I. INTRODUCTION

The problem of localizing a source given range or range-

difference measurements taken using a network of passive

sensors using least squares estimation has been extensively

studied in the past [1]. In this context, given a sensor network,

the problem of placing the sensors in order to improve the

estimation accuracy of the network given time-difference of

arrival measurements [2] is of central importance.

The problem has been studied for some time now and

under different assumptions many solutions were proposed in

the vast literature. Broadly speaking, we can distinguish two

approaches based on ideas from control theory [3], [4], [5]

and methods from estimation theory [6]–[16], respectively.

Previous work in the literature has already considered

the use of tight frames for optimal sensor placement [5],

[14]. These papers provided an optimal placement strategy

given the number of anchor points or proposed heuristics

to construct frames whose properties maximize localization

accuracy. Constructing tight frames that also obey additional

desirable properties is quite hard in general. Consider for

example the spectral Tetris algorithm [17], that constructs unit

norm tight frames, which suffers from the drawback that in

many instances vectors are repeated throughout the frame.

In this paper we do not deal directly with the problem of

sensor placement. Instead, we consider a scenario where the

sensor locations are already given but they can be changed.

Imagine, for example, a scenario where the sensors are located

on vehicles, unmanned aerial vehicles (UAVs) or even people

that are not stationary. Given this initial configuration we ask

how to change it with the minimum effort in order to improve

the theoretical average localization accuracy. We show how

this can be achieved using tight frames to describe the coordi-

nates of the sensors and then we provide numerical results

that validate the approach. Our proposed sensor allocation

technique is computationally simple since it only involves a

single singular value decomposition [18].

Before we present our main results, we provide a quick

overview of the localization problem from time-difference

of arrival measurements and of the main properties of tight

frames that we use in this paper.

II. PRIMER ON THE TIME-DIFFERENCE OF ARRIVAL

LOCALIZATION

Given a sensor network composed of m devices in the n
dimensional space, we introduce the sensor positions matrix

A =
[

a1 a2 . . . am
]

∈ R
n×m. (1)

In this paper we assume that the rank of A is n. We denote

by x ∈ R
n the source coordinate vector to be estimated. The

time-difference of arrival localization problem can be written

as a system of linear equalities

Φy = b, y =

[

‖x‖2
x

]

∈ R
n+1, (2)

where

Φ =











d1 aT1
d2 aT2
...

...

dn aTm




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∈ R
m×(n+1), b =


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
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

b1
b2
...

bm











∈ R
m, (3)

with the source’s range-difference between sensor i and a

reference at the origin di = ‖ai − x‖2 − ‖x‖2 + ni and

bi =
1
2 (‖ai‖22−d2i ) for i = 1, . . . ,m and where n ∈ R

m is the

zero mean i.i.d. Gaussian noise with variance σ2. An estimated

position of the source x̂ is given by the unconstrained least

squares estimate of (2)

x̂ = W(ΦTΦ)−1ΦTb, W =

[

0T

I

]

. (4)

To evaluate the localization accuracy the Cramer-Rao bound

(CRB) is often used. Defined as the inverse Fisher information
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matrix, the CRB provides a lower bound on the variance of

an unbiased estimator. The Fisher information matrix for time-

difference of arrival for the sensor network whose positions are

described by A was first given in [19] and it was shown in

[20] that it can be expressed as:

FA =
1

σ2

(

m
∑

i=1

aia
T
i −mããT

)

=
1

σ2

(

AAT −m−1A11TAT
)

,

(5)

where ã = m−1
∑m

i=1 ai = m−1A1 is the average of the

vectors ai and 1 is the all-ones vector.

In order to minimize the CRB and therefore provide accu-

rate estimates of the source our goal will be to maximize the

determinant of the Fisher information matrix.

III. PRIMER ON TIGHT FRAMES

A family of vectors ai ∈ R
n, i = 1, . . . ,m is called a

frame for R
n if there exists constants 0 < α ≤ β < ∞ such

that

α‖x‖22 ≤
m
∑

i=1

|xTai|2 ≤ β‖x‖22, for all x ∈ R
n. (6)

The matrix A is called the synthesis operator of the frame

while the frame operator AAT obeys αI ≤ AAT ≤ βI.
When α = β we call the frame tight (or α-tight). We will

refer equivalently to the frame or its synthesis operator.

Let A ∈ R
n×m have the singular value decomposition A =

UΣAVT . It was shown in Theorem 2 of [21] for example that,

with respect to the Frobenius norm, the closest α-tight frame

to A is given by

B = U
[

αI 0
]

VT . (7)

We note that tight frames have been used in the past to

improve least squares estimation from noisy measurements.

For example, in wireless communications they improve chan-

nel estimation accuracy [22] and in sparse recovery problems

they reduce the mean squared error [23] [24], on average over

all sparsity levels.

Consider now that A = UΣAVT is normalized such that

‖A‖2F = m. If we denote by B the closest tight frame to A

such that ‖B‖2F = ‖A‖2F we have that

B = UΣBV
T = U

[

sI 0n×(m−n)

]

VT ,

with s =

√

∑n
i=1 σ

2
i

n
,

(8)

where the scalars σi are the singular values of A. We call B

an s-tight frame. The distance between the initial frame A and

the s-tight frame B is given by

‖A−B‖2F =‖UΣAVT −UΣBV
T ‖2F

=‖U(ΣA −ΣB)V
T ‖2F = ‖ΣA −ΣB‖2F

=

n
∑

i=1

(σi − s)2.

(9)

Since B is an s-tight frame with ‖B‖2F = ‖A‖2F = m an

important relationship that we will use is

‖B‖2F = ‖ΣB‖2F = ns2 = m⇒ s2 =
m

n
. (10)

We now move to show the role of tight frames in the time-

difference of arrival localization problem.

IV. SENSOR PLACEMENT VIA TIGHT FRAMES

In this section we explore the consequences of placing the

network sensors in a configuration that describes a tight frame.

For simplicity of exposition we discuss the two-dimensional

case, i.e., n = 2, but similar results hold in general.

Given that a sensor network is placed in a two-dimensional

space according to a s-tight frame B we have the determinant

of the Fisher information matrix using (5):

det(FB) =
1

σ4
det(BBT −m−1B11TBT )

=
1

σ4
det(s2I−m−1B11TBT )

=
1

σ4
det(s2I) det(1−m−11TBT (s2I)−1B1)

=
s4

σ4

(

1− 1

ms2
1TBTB1

)

=
m2

4σ4

(

1− 2

m2
1TBTB1

)

=
m2

4σ4
γ,

(11)

where σ2 is the noise variance and we have used the fact that

det(αX) = α2 det(X) for a 2× 2 matrix and the identity

det(X+AB) = det(X) det(I+BX−1A). (12)

In order to maximize the expression (11) we need to

minimize 1TBTB1. Given that B is a tight frame we know

that the spectrum of BTB is limited to Λ(BTB) = {s2, 0} =
{m/2, 0} where the eigenvalues have multiplicities 2 and

m− 2 respectively. In the worst case scenario if (m−1/21) is

an eigenvector of BTB with eigenvalue m/2 we have the min-

imum value γ = 1− 2
m21

TBTB1 = 1− 2
m2

√
mm

2

√
m = 0.

In the best case scenario we have the maximum γ = 1 when

1TBTB1 = 0. In fact, due to the spectral properties of BTB

we have that γ ∈ [0, 1].
Since BTB has a null space of dimension (m−2) we expect

that, for large enough m, with high probability the constant

vector 1 will have on average, for a randomly generated frame,

a large contribution in the null space. Therefore we expect

1TBTB1 ≪ m2/2 in general. For random s-tight frames B

that also obey ‖B‖2F = m we have

E[γ] =1− 2

m2
E[1TBTB1]

=1− 2

m2
E[‖B1‖22]

=1− 4s2

m2
= 1− 2

m
.

(13)
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With the normalization ‖B‖2F = m the maximum value of

the determinant in (11) matches the value achieved via the

splay configurations proposed in [20]. The symmetry property

discussed in [20] still needs to hold to reach the maximum

det(FB) = m2/(4σ4) but we are able to show that symmetric

tight frames in general are able to reach this maximum.

For certain numbers of sensors m in the network it is trivial

to construct tight frames B that have in their null space the

vector 1. Consider for example the following: given a tight

frame B ∈ R
2×m we construct an extended frame C ∈ R

2×4m

in three steps

C←
[

B

[

−1 0
0 1

]

B

]

∈ R
2×2m,

C←
[

C

[

1 0
0 −1

]

C

]

∈ R
2×4m,

C←1

2
C.

(14)

The resulting C ∈ R
2×4m is tight, has the same Frobenius

norm as B and C1 = 0. The result is tight because we

concatenate tight matrices (flipping the signs of the rows in

the frame preserves tightness) while the fact that C1 = 0 is

true by construction (we first concatenate a reflection about the

y-axis ensuring that the x coordinates sum to zero and then

we reflect about the x-axis ensuring that the y coordinates

sum to zero too). The last update to C guarantees that the

resulting tight frame has the same Frobenius norm as B (each

concatenation increases the Frobenius norm by
√
2).

Given the sensor positions A the work to be done in order

to convert it to a tight frame B is given from (9) to be

W = (σ1 − s)2 + (σ2 − s)2. (15)

The choice in (8) keeps equality between the Frobenius norms

of A and B – meaning that on average the squared sensor

distance with regards to a reference origin point is kept

constant. If the goal is to minimize the effort to relocate the

sensors then the choice smin = σ1+σ2

2 leads to the minimum

work Wmin = (σ1−σ2)
2

2 . We call the smin-tight frame that

achieves this minimum

Bmin = U
[

sminI 02×(m−2)

]

VT . (16)

Therefore, in scenarios where the amount of energy spent by

the sensor network is relevant (assuming a mobile network, for

example an UAV scenario) the choice of the nearest tight frame

for positioning may be different from (8). The difference lies

in the Frobenius norms of these frames. Lastly, we mention

that displacement of the sensors in a network from an α-tight

frame at time t = 0 to a β-tight configuration at time t = 1
can be achieved exclusively through δ-tight frames where δ =
tα + (1 − t)β for t ∈ [0, 1]. Therefore, transitions from one

tight configuration to another are possible while preserving the

average localization accuracy of the sensor network.

V. EXPERIMENTAL RESULTS

In this section we provide numerical experiments to show

how sensor placement via tight frames can provide lower

A

B

B
min

Figure 1: A two-dimensional sensor network with m = 40
sensors positioned by a random frame A and two tight frames

B (8) and Bmin (16) computed from A. The displacements

of the sensors in the initial network, due to the tightness

constraints, are depicted by arrows. The sensors are placed

in an area of size 1km×1km.
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Figure 2: Estimation accuracy evolution for increasing noise

levels and fixed number of sensors m ∈ {40, 60, 80} achieved

by sensor networks whose positioning is given either by the

random frame A or by the closest s-tight frame B.

estimation error. To evaluate performance we consider the root

mean squared error between the true source location x and its

estimate x̂

RMSE(x, x̂) =

√

1

2
‖x− x̂‖22. (17)

For simplicity of exposition we assume a two-dimensional

scenario.

In Fig. 1 we show the initial sensors placement given by a

random matrix A, the closest tight frame next to it with the

same Frobenius norm denoted by B (8) and the closest tight

frame Bmin (16). Notice how in the initial configuration the

sensors are approximately concentrated along the bisector of
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Figure 3: Similar experimental setup to Fig. 2 for noise levels

{0.03, 0.06, 0.09} and varying number of sensors m in the

network.

the plane. The two tight frames proceed to push the sensors in

similar directions perpendicular to this bisector. Sensors placed

further from the origin in the initial random configuration are

pushed towards the center in order to keep the Frobenius norm

of B under control.

In Figs. 2, 3 and 4 we show the RMSE estimation perfor-

mance of sensor networks whose sensor placement is defined

by different frames. All numerical experiments follows the

same setup: we randomly generate via a Gaussian distribution

the initial sensor positions in the frame A for which we fix

σ1 = 3 and σ2 = 1 and when we calculate the new sensor

positions in a tight frame B built via (8) and a symmetric

tight frame C via (14). The results we show are averaged

in the following way: we generate 100 instances of A (and

consequently B and/or C) and then for each instant we

proceed to estimate 1000 randomly generated sources x from

noisy distance measurements. The noise is i.i.d. Gaussian with

zero mean and variance 1/
√
m.

Figs. 2 and 3 show the effect of the noise and the number

of measurements on the RMSE of the estimation. We com-

pare the estimation accuracy of sensor networks positioned

randomly via a frame A with sensor networks defined via s-

tight frames B (8). We notice that in all cases the sensors

positioned via s-tight frames always perform better than their

random counterparts. Of course, lower noise levels and higher

number of sensors lead to better estimation performance. The

performance gap increases with the noise level and with the

number of sensors in the network m.

Last, in Fig. 4 we compare the random initial positioning

with the positioning given by the s-tight frame B (8) closest

to the random configuration and the symmetric s-tight frame

C (14). The frame C is created starting from the positions of

first m/4 sensor from A. The estimation accuracy given by

positioning the sensor network via B or C is nearly identical

and much better than the random configuration. As previously

discussed, for a relative large number of sensors m in the
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Figure 4: Estimation accuracy evolution for increasing noise

levels and fixed number of sensors m = 40 achieved by sensor

networks whose positioning is given either by the random

frame A or by the closest s-tight and symmetric s-tight frames

B and C, respectively.

network the symmetry constraint imposed to maximize the

determinant of the Fisher information matrix does not seem

to play a crucial role in the design. A large enough random s-

tight frame performs similarly on average without the explicit

requirement for symmetry.

VI. CONCLUSIONS

In this paper we show experimentally that sensor networks

whose sensors are positioned according to random tight frames

provide near optimal average localization accuracy from time-

difference of arrival measurements. We base the result on an

analysis of the Fisher information matrix and the maximization

of its determinant. In the experimental setting we do not study

directly the problem of optimal sensor placement but instead,

given an initial configuration, we tackle the problem of moving

the sensors with the minimum amount of energy required such

that the network achieves near optimal localization accuracy.
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