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Abstract—A high recurrence rate, and progression to higher
stages are observed for patients diagnosed with urothelial car-
cinoma (previously known as transitional cell carcinoma). Low
prognostic value of the current grading systems result in extensive
follow-up of patients for multiple years after first diagnosis.
Although, the aid of computer systems for prognosis prediction
of superficial urothelial carcinomas have been proposed, earlier
analyses have been focused on using morphological features
of cells and attributes describing the patient. In this study,
we propose a system to aid in the prediction of prognostic
information based on a texture analysis of histopathological
images of superficial urothelial carcinoma. The analyses are
conducted using the local binary pattern (LBP) and local variance
(VAR) operators followed by a RUSBoost classifier. A dataset of
42 patients, consisting of 13 patients without recurrence, 14 with
recurrence but not progression and 15 patients with progression
are studied. Using a leave-one-out cross-validation, an accuracy
of 70% and sensitivity of 84% is achieved.

I. INTRODUCTION

Bladder cancer is the 6th most common cancer in the world,
with 429.000 new incidents reported in 2012 [1]. While several
types of bladder cancer exists, urothelial carcinoma is the most
common [2]. Superficial tumours are diagnosed in 66 — 75%
of new patients on first presentation of the carcinoma [3], and
are confined to the epithelium and subepithelial connective
tissue and does not invade the muscles. Grading of tumours
are currently done by analysing multiple features from the
extracted cell-tissue by a trained histopathologists. Based on
these features, a grade is given using the WHO73 (1973
World Health Organization classification of papillary urothelial
neoplasms) or WHOO04 (2004 World Health Organization
classification of papillary urothelial neoplasms) guidelines. As
this grading is done manually, interobserver variability has
been a concern and has been reported as a challenge for both
grading systems [2]. Prognostic values of the grading systems
are low, with only a significant difference (p = 0.04) found
for progression free survival between PNLMP and high grade
(WHOO04) [4]. An extensive follow-up is therefore given to
patients diagnosed with superficial urothelial carcinoma, as
recurrences are found in 50— 70% of patients, and progression
to a higher stage in 10 — 30% of patients [2].

Multiple systems for automatic carcinoma detection and
diagnoses prediction to aid histpathologists and clinicians in
cancer diagnosis has previously been proposed, an overview
of the field is given by He et al [S]. A system for automatic
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segmentation of eight different types of tissue using multiple
texture descriptors has been proposed by Kather et al [6],
achieving an accuracy of 87.4%. A system for prognostic
prediction of urothelial carcinoma was proposed by Spyri-
donos et al [7]. Based on a probabilistic neural network
using morphological and features computed from the nucleus,
Spyridonos et al achieved a total accuracy of 71.7% for
prediction of recurrence. A different approach was explored
by Borgi et al with a diagnostic system based on associate
classification. Using 24 attributes to describe each patient
(age, sec, smoking habits etc.), the proposed method correctly
identified 38.53% of patients without recurrence and 68.83%
of patients with recurrence [8]. The use of image processing
and machine learning techniques does, however, introduce the
opportunity of using texture analysis on entire histopatho-
logical images, without the required segmentation to identify
each cell nucleus, resulting in a considerable simplification
of the analysis. In this paper, we use local binary pattern
(LBP) on histopathological images for prognostic purposes
in urothelial carcinoma without segmenting individual cells.
LBP have previously been applied with promising results on
segmentation of histopathological images [6], other medical
applications [9], [10], as well as other applications [11], [12].

The aim of this study is to design a framework to aid in
the prognostic prediction of urothelial carcinoma by using
a texture analysis on histopathological images. The texture
analysis will be conducted using the LBP and local variance
(VAR) texture descriptors.

A. Data material

The data set used in this study are previously used by Man-
grud et al [13] and consist of 42 cases of primary superficial
urothelial carcinoma diagnosed at the Department of Urology
and Pathology at Stavanger University Hospital during the
period January 1. 2002 - December 31. 2006. The study was
approved by the Norwegian Regional Ethics Committee (REK
Vest, #106/09) before the start of the study. With approval
from REK Vest, informed consent was not obtained as the
tissue samples had already been removed for diagnostic and
treatment purposes [2]. Tumor tissue was fixed in 4% buffered
formaldehyde, dehydrated and embedded in paraffin, and four
wm thick sections stained with Haematoxylin-Erythrosine-
Saffron (HES) was used [2].
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Fig. 1. Example images of intersample variations between prognoses and within each prognosis. No-recurrence (left column), recurrence (middle column),

and progression (right column).

The original study considered follow-up information within
a five year period. This study will however consider all
available follow-up information, as progression occurred for
one of the 42 patients after five years and one month. The
data set then consist of 15 cases with progression and 27 cases
without progression, table I, with two cases for each prognosis
shown in Figure 1.

TABLE I
PROGNOSTIC FOLLOW-UP INFORMATION
| No recurrence | Recurrence
No progression | Progression
# of patients 13 14 15

Follow-up information was acquired from the Department
of Pathology at Stavanger University Hospital.

The histopathological images are scanned at a high res-
olution, image processing using complete images were not
considered feasible due to the high computational requirement.
As a consequence of this, smaller sections (at a resolution of
1918 x 921 x 24bit) using a 400z magnification were chosen
in collaboration with a trained pathologist with the goal of
illustrating cell maturation from the connective tissue to the
outer cell layer. Regions with artefacts due to heating damage
or other external causes were avoided. Folded tissue was
included in one image, as the chosen section was otherwise a
good representation of the tumour.

II. METHODS

A. Local binary pattern

Local binary pattern provides a robust way of describing
local texture in a neighbourhood [14]. A label describing
each pixel in the image is computed using the neighbourhood
defined by P points on the circle with radius R from the
pixel itself. Each neighbour are thresholded using the value
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of the center pixel. By assigning weights to each neighbour,
a numerical value describing the texture is obtained.

P-1 .
1 ifz>0
LBPpRr = s(gp—gc)2P, s(xz) = - 1
B p;)(g” 9c) @=Y0 itr<o P

Where g. and g,, denotes the center and a neighbouring pixel.
The operator can be extended to facilitate for rotation invariant
and uniform textures [15].

P-1
Zp:(] S(gp - gC)
P+1

LBPE2 — if U(L.BPP,R) <2
' otherwise
2)
Where U|(-) describes number of transitions in the binary label.
The local variance of a neighbourhood, denoted VARp g, is
given by
| Pl , | B=l
VARpr=5D (-1 =35> 0 0
p=0 p=0
When keeping the number of neighbouring pixels fixed
while increasing the radius, an increasingly spare represen-
tation of the image is obtained. A multi-resolution LBP
combined with Gaussian filtering was proposed by Mienpdd
et al to overcome this challenge [16]. The method uses an
exponentially growing radius and non-overlapping effective
areas. This multi-resolution method is adopted here. The radius
for each scale is, however, manually chosen instead of using
the exponentially growing radius proposed by Méenpia.

B. RUSBoost

Creating an effective classification model using an imbal-
anced data set can be challenging, as traditional methods
tend to favour the largest classes [17]. Multiple algorithms
have previously been proposed to alleviate this challenge,
including methods utilizing data resampling and boosting tech-
niques [18]. Data sampling eliminate the class imbalance by
introducing new examples in the smaller classes, or removing
examples in the larger classes. Boosting, however, creates a
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Fig. 2. Block diagram of the proposed method. Input images are normalized, texture operators are applied and regions of tissue in the images identified. A
histogram is created for all pixels identified as tissue. Features are computed as the difference between the image histogram, and model histograms computed

from the training.

collection of weak learners, where each weak learner perform
better than random guessing. These are in turn used to create
a more complex strong learner to describe the data set [19].
SMOTEBoost, proposed by Chawla et al [20] implement both
techniques. The method utilize a data oversampling technique,
where new synthetic features are added between existing
features in a continuous feature space, in combination with
AdaBoost [19]. The drawback of this method is, however,
the increased computational requirement as a consequence
of the introduced synthetic examples. An alternative method,
RUSBoost, was proposed by Seiffert et al [17] to reduce the
computational requirement of SMOTEBoost. The method uti-
lize a random under sampling technique in combination with
AdaBoost. The primary drawback of using under sampling
techniques, is the loss of information. The combination of
under sampling and boosting overcomes this drawback, as the
removed examples are likely to be used in another iteration
of the boosting technique. The method also achieve similar
performance as SMOTEBoost [17].

III. PROPOSED SYSTEM

A block diagram of the proposed system is shown in
Figure 2. In the following section, the different parts of the
system will be explained.

A. Image processing

The section describes the operations contained in the image
processing block in Figure 2. Variations in thickness of the
cell sections and amount of HES used, affects both shade and
brightness of the tissue. These variations are clearly apparent
in the example images, Figure 1. As these parameters are
independent of the prognosis of the patient, their effect in this
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analysis are minimized by converting all images to grayscale,
and equalizing pixel values to span the range [0, 1].

An automatic masking algorithm for identification of
regions covered by tissue are implemented using Otsu’s
method [21]. To obtain the major trends in the image, the
mask are dilated using disk shaped structure element of size
9. Holes in the mask with a size < 4000 pixels are removed
using a flood-fill operation, remaining regions in the mask with
a size < 4000 pixels are removed using a flood-fill operation
on the inverted mask. The mask is finally eroded with the same
9 pixel disk that was used for dilation.

We use multi-resolution LBP including a variable size
Gaussian low-pass filter, with 95% of its mass within a circle
with radius g, = mR/ P, according to the method presented by
Maienpéi et [16]. The variable size Gaussian low-pass filter is
applied to the image before computing LBP and VAR at each
scale.

B. Feature extraction

The section describes the operations contained in the test
feature extraction and training feature extraction blocks in
Figure 2. For each scale R,, a histogram describing all pixels
identified as tissue is created for both operators. Models are
defined for each prognosis using histograms computed from
the training set at scale R,.. The mean histogram for prognosis
w is found by

“)

where h, ; describes the histogram of image 1 with progno-
sis w, and n the number of patients in the training set with the
given prognosis. The mean histogram, p,,, is a 1 X B vector,
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where B is the number of bins in h,, ;. Variance for each bin
in the histogram is found by

1 n
2 o2
= hw i Hw 5
7 = 5 2 Ui = 1) )
where n is the number of patients and o2 the element-
wise squared, and o2 is a 1 x B vector. Using Chi-square,
the similarity between the image histogram and models are
computed for each prognosis.

B ) .
iy (h(4) — 110 (5))?

X2, = :
e a2 (j)

Jj=1
where hy(j) describes bin j of the histogram of input image
k, B the number of bins in hy, u,(j) bin j of the mean
histogram, and o2 (j) bin j of the variance of prognosis w.
Multiple scales, R,, are then combined using individual
normalized weights w € [0, 1].

(6)

R
F= wd =wx? (7)
r=1

Where w! is a 1 x R weight vector and x? is a column
vector of x2. The weight w = [1, 0.89] was chosen through
an exhaustive search using the chosen scales.

A combined vector, using both LBP and local variance in
combination with all known prognoses, results in the feature
vector. _

W XLBPw:
WTXQLBP,WQ
WTXQLBP,W;,
WTX%/ar,wl
WTX%/ar,wz
WTX%/ar,W3

®)

Where prognoses are denoted wy for no recurrence, wo for
recurrence but not progression, and ws for progression.

C. Classifier

An apparent class imbalance exists when predicting either
no-recurrence or recurrence of patients using the chosen data
set. By expanding the data set as more patients are diagnosed,
this imbalance will prevail as the various prognoses rates are
different. To alleviate this imbalance, the RUSBoost classifier
is chosen.

IV. EXPERIMENTS AND RESULTS

The algorithm for identifying tissue in the images were
developed using one of the images in the data set. Truth masks
were manually created by the authors of this paper, it should
therefore be taken as an approximation of the actual truth
masks. Validation of the masks on the other 41 images achieve
a mean accuracy of 98.7%, sensitivity of 99.4% and specificity
of 92.9%. Accuracy is defined as the proportion of correctly
classified examples in all classes, sensitivity the proportion in
the positive class and specificity the proportion in the negative
class.

ISBN 978-0-9928626-7-1 © EURASIP 2017

Fig. 3. Masking error using the automatic identification of tissue, histopatho-
logical image shown in Figure 1 (second row, middle column). Regions
manually annotated as tissue, but not identified by the automatic masking
is shown in blue. The opposite is shown in red.

Due to the size of the data set, classification were conducted
using a leave-one-out cross-validation. Initial testing to deter-
mine system parameters were done using an exhaustive search,
using the parameters R = {3,5,7,9} and P = {8,16,24}.
A two-class problem, using histogram models based on all
known prognoses to predict no-recurrence/recurrence was cho-
sen. The optimal neighbourhood was found to be R = {3,5}
P = 8 with the corresponding weights w; = 1, ws = 0.89.
For experiments using only the LBP or VAR operator, a total
of three features were used. In the experiment using both
operators, a total of six features were used.

A wide range of weak learners (1-200) was tested to
determine the optimal region. As the classifier uses random
undersampling, the accuracy, sensitivity, and specificity were
computed as the mean of 48 classifications for each number
of weak learners. The highest accuracies were found when
using 90 weak learners, and these are the results shown in
table II. Performance of existing systems are shown in table III.
Patients with recurrence are defined as the positive class, and
patients without recurrence as the negative class.

TABLE 11
SYSTEM PERFORMANCE OF PREDICTING RECURRENCE USING 90 WEAK
LEARNERS. VAR AND LBP ARE COMPUTED USING R={3,5} AND P=8.

| Accuracy | Sensitivity | Specificity
LBP & VAR | 72.08 £2.30 | 84.36 +2.30 | 44.68 £ 3.78
LBP 71.63 +£2.71 | 83.98 £2.71 | 44.07+4.12
VAR 63.94+0.84 | 61.85+0.84 | 68.59 +4.15
TABLE III
SYSTEM PERFORMANCE OF PREDICTING RECURRENCE IN EXISTING
SYSTEMS.
| features | Accuracy | Sensitivity | Specificity
Borgi [8] 24 51.0 68.83% 38.53%
Spyridonos [7] ‘ 4 ‘ 72.82% ‘ 72.3% ‘ 71.1%

V. DISCUSSION

The proposed algorithm for automatic identification of tis-
sue in histopathological images perform very well, however
in regions where a smooth transition occur between areas
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with and without tissue, the algorithm struggle to identify the
outmost cell layer.

Prognosis prediction using features computed using only the
LBP operator achieves a sensitivity of 84.34% and a specificity
of 44.68%, an increased identification rate of both outcomes
compared to the system proposed by Borgi et al [8], table III.
The overall system accuracy is similar to the result presented
by Spyrindonos [7], table III, but the proposed method in
this paper does, however, not require nuclei segmentation to
define features, thus reducing the complexity of the system.
The proposed method also use fewer features. In addition, the
higher identification rate of patients with recurrence achieved
in this experiment are desired, as this will reduce the amount of
patients receiving insufficient follow-up treatment. Prediction
using features computed using the VAR operator, achieves
an identification rate above 60% for each class. No apparent
increase in performance is observed when using both feature
descriptors, compared to using LBP alone. We assume this to
be a consequence of the limited data set used in this analysis.

The proposed system does not achieve an identification rate
high enough to replace traditional manual grading. However,
we consider the system useful, as it can be used as an aid
for histopathologists and clinicians in combinations with the
traditional manual analysis, as the interobserver variability is
removed.

VI. CONCLUSION

This study propose a system to aid in the prediction of
recurrence of urothelial carcinoma with the use of a local
texture analysis on histopathological images. The results sug-
gest that both local binary pattern, and to some extent local
variance, can be used to identify patients with recurrence
without the need of segmenting cells. Local binary pattern
achieve 84% correct identification of patients with recurrence,
while the identification rate of patients without recurrence are
approximately 45%. While local variance achieve above 60%
correct identification for each class. The use of both operators
combined does, however, not result in an improvement over
LBP alone.

Due to the limited data set used in this analysis, future work
is focused on reproducibility of the results using a larger data
set. Additionally, the use of multiple sections from histopatho-
logical images to describe each patient are considered an
interesting direction to increase the data available.
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