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Abstract—We consider the problem of signal segmentation in
the setup of supervised learning. The supervision lies here in
the existence of labelled changepoints in a historical database
of similar signals. Typical segmentation techniques rely on a
penalized least square procedure where the smoothing parameter
is fixed arbitrarily. We introduce the ALPIN (Adaptive Linear
Penalty INference) algorithm to tune automatically the smoothing
parameter. ALPIN has linear complexity with respect to the
sample size and turns out to be robust with respect to noise
and diverse annotation strategies. Numerical experiments reveal
the efficiency of ALPIN compared to state-of-the-art methods.

I. INTRODUCTION

The task of changepoint detection consists in retrieving
the time stamps where a signal undergoes abrupt changes
or, equivalently, in finding the different regimes a signal
is composed of [1], [2]. Signal segmentation is a standard
preprocessing step in numerous signal processing tasks such
as indexation or feature extraction, which are often built on
the assumption that only one phenomenon is observable in
the signal. In several fields such as geology, bioengineering,
or biology the segmentation is still performed manually by
experts, who are able to pinpoint where changepoints occur in
a signal thanks to experience and a high level understanding of
the underlying phenomenon which causes them. Nevertheless,
this task is fastidious and time-consuming and several ap-
proaches for automatic segmentation based on statistical tests,
global optimization or data modelling have been introduced to
address this problem.
The main limitations to the use of these approaches in real-
life situations is that those methods are seldom fully automatic
and rely on several parameters (like the statistical confidence
level [1], [3], the number of regimes [4], [5], etc.). The
manual tuning of these parameters is more art than science,
especially when the data are noisy, does not fit a standard
model or when the end user has particular expectations (for
example detecting only changepoints of a certain magnitude).
Furthermore, this manual tuning by trial-and-error is often
suboptimal as it only explores a fraction of the parameter space
and a limited number of train signals. Finding a quantitative
means to calibrate segmentation algorithms to best match the
user’s expectations is a subject of active research [6]–[10].
Some heuristics have been introduced that can provide a rough
estimation of the parameters to be tuned. Recent methods
have used supervised machine learning techniques to adapt
parameters to the data by using annotated databases [6], [11]
with promising results for DNA fragmentation.
This article follows this approach and proposes a novel method

to fully automatize a signal segmentation algorithm. In the
setup of supervised learning, the smoothing parameter of a
penalized least square procedure is learned by optimizing a
convex loss function measuring the differences between the
labels and the detected changepoints. We show that this low-
complexity procedure adapts to the annotation strategy of the
expert. This information can then be used on new unlabeled
data to provide segmentation results that are coherent with the
expert specifications.
In Section II, the framework of signal segmentation is de-
scribed, as well as existing methods to calibrate the penalty
parameter. Then in Section III we propose a scheme to learn
it from a data set of annotated signals. The experimental
methodology is described with detail in Section IV and the
results are commented in Section V.

II. BACKGROUND

In this section, we present the problem of penalized change-
point detection and the existing penalties that can be found in
the literature.

A. Penalized changepoint detection

Let y ∈ Rn be a signal of n samples, corrupted by an
additive noise ε ∼ N (0, σ2In). We assume that y is not
stationary and is composed of several successive regimes. Let
P be the set of partitions of {1, . . . , n} which consist solely
of integer intervals. For a partition A =

{
a1, . . . , a|A|

}
∈

P , a1, . . . , a|A| represent different regimes. The number of
regimes in A is |A| and |A| − 1 the number of changepoints.
The aim of changepoint detection is to retrieve the different
regimes present in the signal and the times where the signal
switches from one regime to another.
For a given partition A ∈ P , a natural measure of the
approximation quality is the empirical quadratic risk [7]–[9]:

R(y,A) :=
∑
a∈A

∑
i∈a

(yi − ȳa)2 (1)

where yi is the i-th sample and ȳa is the mean value of
y on segment a. The relationship between a signal and its
approximation on a partition is illustrated on Figure 1. This
quantity can be made arbitrarily close to zero by choosing
a partition with a sufficient number of regimes. Therefore, it
can only be minimized if the number of regimes |A| is known,
which is often not the case in real-life scenario.
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Fig. 1. Signal example. Dotted line: signal example y ∈ R100. Thick line:
best piecewise approximation with underlying partition A = {a1, a2, a3}.

When |A| is unknown, a penalized empirical quadratic risk
can be used instead

arg min
A∈P

R(y,A) + pen(A), (2)

where pen(·) denotes a suitable nonnegative function defined
on P . The penalty term allows to control the balance between
signal approximation and model complexity. The function
pen(·) is increasing when the partition A is more complex
(e.g. |A| increases). The objective of the method presented in
this article is the learn a suitable function A 7→ pen(A) such
that the result of (2) agrees with the expert’s annotation.

B. Examples of penalties

Several penalty terms have been used in the literature, either
justified from theoretical assumptions or inferred from data.
• BIC ([12]). Also known as the Schwarz’s criterion,

the BIC penalty has been thoroughly used for model
selection.

pen(A) = σ2 log(n)|A| (3)

This penalty depends on the variance of the noise (which
has to be estimated beforehand), the number of change-
points and the signal length. By design it maximizes
an asymptotic approximation of the posterior probability
with a uniform prior. The same parameters are used in
various penalties [13], [7].

• Hocking, 2013 ([6], [11]). The main originality of this
penalty is that the constants w1, w2, w3 are learned from
annotated data.

pen(A) = ew1 log(n)+w2 log(σ)+w3 |A| (4)

More precisely, the objective is to find the parameters
w1, w2, w3 that minimize the annotation error, which is
the difference between the number of regimes of the
solution of (2) and the number of regimes given by
the expert. Since the annotation error is not convex and
cannot be optimized as such, the authors propose to use a
convex relaxation of the annotation error, which requires
the computation of a large number of segmentations.
The method presented in this work differs essentially
on the mapping and skips the initial calculation of all
segmentations.

• Lavielle, 2005 ([9]). This penalty does not have a closed
form but consists in a heuristic. The best empirical
quadratic risk is computed for an increasing number
of regimes As soon as adding a changepoint does not
significantly reduce this quantity, the method outputs the
current number of regimes as the final segmentation.

III. METHOD

In this section we introduce the ALPIN algorithm, which
aims at efficient supervised segmentation in the case of linear
penalties thanks to the empirical estimation of the smoothing
parameter.

A. Penalized changepoint detection with linear penalty

We consider here the case of linear penalties, which is the
most common in the literature [9], [12], [14]. The penalty term
is assumed to be linear in the number of regimes, i.e.

pen(A) := β|A| with β > 0. (5)

The smoothing parameter β controls the trade-off between
model complexity and goodness of fit. Low values of β favour
partitions with many regimes and high values of β discard
most changepoints.
Considering a signal y ∈ Rn, the penalized changepoint
detection problem of (2) now consists in finding the β-optimal
partition Âβ(y) defined as :

Âβ(y) := arg min
A∈P

Rβ(y,A)

with Rβ(y,A) := R(y,A) + β|A|.
(6)

Interestingly, there exists an efficient algorithm to recover the
β-optimal partition, whose complexity is in O(n) ([15]).

B. Excess penalized risk

Our goal is to learn the value for β to use in (6) in
order to output a partition that agrees with the expert view.
The approach described in this paper assumes that expert
annotation on past signals are available. For an annotated
signal y ∈ Rn, the expert annotation is a partition Alab(y) ∈ P .
The objective is to find a value of β ∈]0,+∞] such that the
β-optimal partition Âβ(y) coincides with the expert partition
Alab(y). We introduce the excess penalized risk

E(y, β) := Rβ(y,Alab(y))− min
A∈P

Rβ(y,A). (7)

For illustration purposes, a view of the excess penalized risk
of a signal is shown on Figure 2. This quantity will serve as
a loss function in the supervised learning strategy described
in the following section. It is the difference between the
empirical quadratic risk of the expert partition and the one of
the β-optimal partition. The excess penalized risk is always
nonnegative and the function β 7→ E(y, β) is convex for any
signal y ∈ Rn. Indeed, for a fixed partition A ∈ P the function
β 7→ Rβ(y,A) is affine, so the function β 7→ min

A∈P
Rβ(y,A),

which is the pointwise minimum of a finite set of affine
functions, is concave. The excess penalized risk is by definition
an affine function minus a concave function, thus it is convex.
As a result, any method for convex optimization can be used
to compute the true minimum of the excess penalized risk
way relative to β. In this article we use a limited memory
quasi-Newton algorithm [16], which requires the computation
of the excess penalized risk at each iteration. As stated in
Section III-A, the β-optimal partition can be computed in
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Fig. 2. (Top) For a given signal y ∈ Rn the minimum empirical risk over all
partitions A ∈ P is plotted versus the penalty level. Dashed lines are empirical
risks for a few partitions. (Bottom) The corresponding excess penalized risk
is plotted versus the penalty level.

O(n) operations thus so does the excess penalized risk. This
learning strategy is more efficient than “Hocking, 2013” which
requires O(n2) operations [6]. When predicting changepoints,
BIC, “Hocking, 2013” and ALPIN achieve this task in linear
time, contrary to “Lavielle, 2005” which has quadratic com-
plexity [9].

C. Estimation of the smoothing parameter

Given N annotated signals y(1), . . . , y(N) and their associ-
ated expert partitions Alab(y(1)), . . . , Alab(y(N)), we infer the
penalty β which yields the lowest average excess penalized
risk:

βopt := arg min
β>0

1

N

N∑
i=1

E(y(i), β). (8)

Since the contributions of each signal y(i) to the average
excess penalized risk is independent, all calculations can be
done in parallel. In order to improve the performances of
the optimization procedure, we initialize the algorithm by
randomly picking a signal from the training database. The
penalty that minimizes its excess penalized risk is found and
this value is used as a warm start for the optimization of the
global average excess penalized risk.

IV. EXPERIMENTS

This section presents the experimental setting used for
analysing the performance of the ALPIN algorithm.

A. Data set

For testing, we use a synthetic data set constructed as
follows. A set of 100 piecewise constant functions from [0, 1]
to R are simulated, with a number of changepoints randomly
chosen between 3 and 7. The length of each regime is drawn
uniformly between 0.05 and 0.3 and the jumps between
regimes have random amplitudes between 1 and 5. Those
functions are then sampled on an equispaced grid of n points
and corrupted by a Gaussian noise of variance σ2. The expert
partitions are defined as the true partitions used to simulate
the data.

B. Performance metrics

The performance on the data set is assessed with several
metrics. Let A ∈ P and Alab be respectively the parti-
tion output by the algorithm and the expert partition. Let
a1, . . . , a|A|−1 and alab

1 , . . . , alab
|Alab|−1 their respective associ-

ated changepoints.

• HAUSDORFF metric is large when a changepoint from
either A or Alab is far from every changepoint of Alab or
A respectively [5]. Oversegmentation as well as under-
segmentation is penalized.

• PRECISION and RECALL measure the ability of the
method to find the correct change times (with a tolerance
of 10 samples). Oversegmentation of a signal causes the
precision to be close to zero and the recall close to one.
Undersegmentation has the opposite effect.

• ANNOTATIONERROR measures the error made in esti-
mating the number of changepoints [6].

• RANDINDEX has been introduced to evaluate clustering
methods [5]. It measures the ability of the method to
assign the samples to the same regime than in the expert
partition.

The formulas of all metrics are summarized in Table I.
TABLE I

METRIC FORMULAS.

Name Value

HAUSDORFF max{maximinj |ai − alab
j |,maxj mini |ai − alab

j |}

PRECISION
card{alab

i s.t. minj |a
lab
i −aj |<10}

|A|−1

RECALL
card{alab

i s.t. minj |a
lab
i −aj |<10}

|Alab|−1

ANNOTATIONERROR
∣∣|A| − |Alab|

∣∣
RANDINDEX

card{(s,t)|Alab and A agree on (s,t)}
n(n−1)

V. RESULTS

In this section, we first compare the ALPIN algorithm to a
standard changepoint detection method using sliding windows.
Then we compare the penalty learned with ALPIN to the
state-of-the-art penalties described in Section II-B. Finally, we
discuss the adaptivity of the method to the expectations of the
expert.

A. Comparison with a standard procedure

The most common changepoint detection method does not
use learning nor optimization, but a statistical test computed
on a sliding window. This method, has been extensively used
for online segmentation in various application fields [1], [17],
[18]. For each sliding window, a Student-s T-test is performed
between the samples in the first half of the window and those
in the last half. If the test is positive, i.e. if a significant
difference is detected between the two sets of samples, a
changepoint is detected. In our implementation of this method,
the confidence level is set at 95%, the real value of the noise
variance σ2 is supposed to be known and the window length
is equal to the smallest segment found in the database (i.e.
0.05× n samples).

The average PRECISION and RECALL on the synthetic data
set are computed for this method as well as for the ALPIN
method, for different noise level σ and different signal lengths
n. For the ALPIN method these metrics are computed using a
10-fold cross-validation. Results shown on Figure 3 show that
ALPIN displays better performances the noise level, which
illustrates the relevance of the learning strategy. It is also
noticeable that the t-test method is sensitive to the noise level :
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Fig. 3. Performances of ALPIN and the Student’s t-test for several combinations of (n, σ).

True signal

Noisy measurements ALPIN

Hocking, 2013 BIC

Lavielle, 2005

ALPIN Hocking, 2013 BIC Lavielle, 2005
HAUSDORFF 12 26 33 123
PRECISION 0.60 0.25 0.36 0.50

RECALL 0.60 0.20 0.8 0.2
RANDINDEX 0.96 0.95 0.93 0.85

ANNOTATIONERROR 0 1 6 3

Fig. 4. Signal example (n = 500, σ = 2) and the computed segmentation for ALPIN, “Hocking, 2013”, BIC, “Lavielle, 2005”. Consecutive regimes are in
different shades of grey. The metric values are given in the table.

TABLE II
SCORES. MEANS AND STANDARD DEVIATIONS ARE SHOWN. FOR EACH

METRIC, THE BEST SCORE IS IN BOLD TYPE.

n = 500, σ = 1 ALPIN Hocking, 2013 BIC Lavielle, 2005
HAUSDORFF 2.1 (3.8) 1.9 (3.2) 43.7 (34.6) 78.7 (78.6)
PRECISION 0.99 (0.05) 0.99 (0.04) 0.64 (0.20) 0.99 (0.07)

RECALL 0.99 (0.04) 0.99 (0.04) 0.99 (0.04) 0.71 (0.26)
RANDINDEX 0.997 (0.006) 0.997 (0.006) 0.970 (0.022) 0.904 (0.109)

ANNOTATIONERROR 0.0 (0.1) 0.0 (0.0) 3.1 (2.3) 1.4 (1.4)

n = 500, σ = 2 ALPIN Hocking, 2013 BIC Lavielle, 2005
HAUSDORFF 20.6 (31.0) 19.4 (29.2) 46.3 (35.5) 90.8 (74.7)
PRECISION 0.92 (0.12) 0.94 (0.12) 0.63 (0.23) 0.97 (0.10)

RECALL 0.91 (0.13) 0.90 (0.15) 0.93 (0.13) 0.64 (0.25)
RANDINDEX 0.980 (0.023) 0.976 (0.035) 0.959 (0.029) 0.884 (0.103)

ANNOTATIONERROR 0.27 (0.49) 0.31 (0.56) 2.8 (2.5) 1.6 (1.3)

when σ is larger that 2, both metrics go to zero, meaning that
the standard method is not able to detect any changepoint.
The ALPIN algorithm, thanks to the learning process, adapts to
the considered problem and maintain acceptable performances
even when the noise level is large.

B. Comparison with existing methods

In this section, the penalty learned by ALPIN is compared
to existing penalties described in Section II-B. Two scenarii
are defined that correspond to two different noise levels :
moderate (σ = 1) and difficult (σ = 2). The signal length
is set to n = 500. The true value of σ is fed to the
penalties relying on it and the learning for “Hocking, 2013”
and ALPIN is performed using a 10-fold cross-validation.
Table II presents the metrics values (mean and standard
deviation) for both values of σ. The first observation is that
the learning step of “Hocking, 2013” and ALPIN clearly
improves the performances. On average, when σ = 1 (resp.
σ = 2), the maximum error when predicting a changepoint is
around 2 samples (resp. 20 samples) for “Hocking, 2013” and
ALPIN. (See HAUSDORFF in Table II.) In particular, BIC and
“Lavielle, 2005” respectively overestimate and underestimate
the number of regimes for both scenarii. As a result each of

these techniques can optimize either PRECISION or RECALL
but not both. Conversely, “Hocking, 2013” and ALPIN keep
both PRECISION and RECALL over 90%. Penalty learning
approaches have almost perfect reconstruction for signals with
a moderate noise level (σ = 1), but in the difficult scenario
(σ = 2), accuracy decreases as noise blurs small jumps.
Figure 4 presents an example of the results obtained with
the different penalties for the difficult scenario. Interestingly,
although some changepoints are not really visible, they are
still recovered almost perfectly with the ALPIN algorithm.
The first and fourth predictions of ALPIN are detected with
an error larger than 10 signal samples, but this phenomenon
also occurs for “Hocking, 2013”. However “Hocking, 2013”
fails to find the changepoint between the second and third
regimes, which is characterized by a small amplitude jump
and a short duration. As previously described, the BIC method
tends to oversegment the signal, while the “Lavielle, 2005”
undersegments it.
Although the performances of “Hocking, 2013” and ALPIN
are not significantly different on this data set, the computation
time to run both techniques is. Indeed, the execution time for
processing 100 signals of length n = 500 (learning step) is 33
minutes for “Hocking, 2013” but only 7 minutes for ALPIN1.
The convex excess penalized risk introduced in Section III-B
and the possibility to directly minimize it with standard
optimization methods allows to keep a reasonable computing
time, which makes it suitable for real-life situations.

C. Adaptiveness to expert labels

One interesting feature of learning the penalty from an-
notated data is that ALPIN algorithm is able to adapt to
different expert annotations. More precisely, depending of the
changepoints that have been annotated by the expert, the final

1All times refer to running a Python implementation of ALPIN and [6] on
a Linux computer with 24 Intel processors running at 2.80 GHz (CPU)
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ALPIN
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ALPIN

Fig. 5. (Top) Signal example and its noisy version (n = 500, σ = 2).
(Middle) Prediction and expert partition according to Protocol I. (Bottom)
Prediction and expert partition according to Protocol II.

segmentation algorithm can be different. To investigate this
idea, we propose to consider two annotation protocols for the
database described in Section IV-A.
• In Protocol I, all changepoints from the true underlying

function are considered.
• In Protocol II, only the biggest and most visible change-

points are regarded as real changepoints. More precisely
the changes with amplitude below 3 are discarded.

The idea behind this experiment is to see if the algorithm
can learn the differences between these two protocols and
especially if the final segmentation algorithms with the two
learned penalties yield to different results. Figure 5 presents
an example of the results obtained with ALPIN by using only
train data from Protocol I or only train data from Protocol II.
It is visible that the number of changepoints detected for both
protocols are different, although the input signal is exactly the
same. This proves that the algorithm was able to learn that
Protocol II only considers the largest changes. In Protocol I,
one changepoint is missed (middle plot) which is due to the
fact that the mean shift is small, a situation that is rarely found
in the training database.

VI. CONCLUSION

In this article, we have introduced a learning strategy to
customize segmentation algorithms thanks to an annotated
database. By using a convex excess penalized risk, this proce-
dure can be performed in acceptable runtime and is suitable
for real-life applications. Results show that the method adapts
well to a wide range of situations (noisy signals, small and
large jumps) and is able to learn the magnitude and number
of changepoints expected by the expert.
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