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CNRS-CentraleSupélec-Univ Paris Saclay, 91192 Gif-sur-Yvette, France

Email: djafari@lss.supelec.fr

Abstract—In this paper a new direct nonparametric estimation
of the period and the shape of a periodic component in short
duration signals is proposed and evaluated. Classical Fourier
Transform (FT) methods lack precision and resolution when
the duration of the signal is very short and the signal is noisy.
The proposed method is based on the direct description of the
problem as a linear inverse problem and a Bayesian inference
approach with appropriate prior distributions. The expression
of the joint posterior law of the period and the shape of the
periodic component is obtained and used to determine both the
period and the shape of the periodic component. Some results
on synthetic data show the performance of the proposed method
compared to the state of the art methods.
keywords: Periodic signals; Period estimation; Short duration
signals; Bayesian inference; Approximate Bayesian Computation
(ABC)

I. INTRODUCTION

Detecting a periodic component in a short duration signal
and estimating its period and shape is an important problem
in many signal processing applications. As an example to
mention is the biological applications, involving such time
series as body temperature, activity level (circadian cycle) and
many genes expression (cell cycle) [1]. Classically, Fourier
Transform (FT) methods are used for this task, but when the
duration of the signal is very short, for example only a few
periods, these methods lack precision and resolution. Many
parametric methods such as Fourier series decompositions can
obtain better resolution [2], [3], [4], [5], but the precision of
the period and the shape of the component is not often good
enough when the shape of the periodic component is far from
a sinusoidal form [6], [7], [8], [9]

In this work, a new method is presented to determine the
period very precisely and estimate the nonparametric shape of
that periodic component. The method is based on the descrip-
tion of the problem directly as a linear inverse problem and
the Bayesian inference. A description of the forward problem
formulation and a constrained Least Square method has been
reported in [8], [10], a regularization based method in [11] and
a Maximum a posteriori (MAP) estimation method in [12],
[13], [14]. The main advantage of the Bayesian framework
is the possibility of accounting explicitly for the errors and
uncertainties such as the measurement noise and modelling
uncertainties and can quantify the remaining uncertainties of

the proposed estimates. However the computational costs of
the exact computation of the solutions in these methods are
very high.

II. PROPOSED METHOD

A direct forward nonparametric model relating the observed
data to the unknowns of the problem is illustrated in Figure 1
where a periodic component signal which is repeated a few
times. Note that there is no need to have observed an exact
multiple of the period. As we can see in this Figure, we have
three complete periods and an extra fraction of it.

Fig. 1. A periodic signal and its periodic component. In this example 3 full
periods and a fraction of it is observed.

The forward model is directly obtained by considering a
length M time series g(t), t = 0, · · · ,M−1 in which we seek
a length N periodic shape f(t), t = 0, · · · , N − 1. Noting by
the vector g the M samples of g(t) and by the vector f the
N samples of the unknown periodic component, the relation
between these two vectors becomes:

g= [g1, · · · , gN , gN+1, · · · , gN+K , · · · , gKN+1, · · · , gM ]′

= [f1, · · · , fN , f1 , · · · , fN , · · · , f1, · · · , fr]
′

(1)
where M = KN+r with K the number of complete repetition
of the periodic component and r is the length of the remainder.

For a given N , this relation can be written as a linear vector
matrix relation g =HNf with HN a MxN matrix with the
following structure

HN = [IN |IN |...|IN |I(:, 1 : r)]′ (2)

where IN is the identity matrix of size (N × N) and IN (:
, 1 : r) is its first r columns.
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f̃ =H ′Ng is a vector where

f̃j =

{ ∑K
k=1 g((k − 1)N + j) for j = 1, · · · , r∑K−1
k=1 g((k − 1)N + j) for j = r + 1, · · · , N

(3)
The problem now is expressed in this way: from the time

series observations g, determine the period N and the shape
f from the noisy data g related by:

g =HNf + ε (4)

where the vector ε represents the noise and all the other
uncertainties.

From here, there are at least three approaches: Least Square
(LS) methods, Regularization based methods and finally the
Bayesian approach. In this paper, the third approach is fol-
lowed.

A. Bayesian approach

A simple way to start is to consider the following two
equations:{

Forward model : g =HNf + ε

Regularity model : DNf = ξ −→ f =D−1N ξ
(5)

where ε contains all the measurement and modelling errors,
DN is a linear regularity operator and ξ is its error term. The
prior distributions on ε, on ξ, and on N are then assigned
and the expressions of the likelihood p(g|f , N) and the prior
distributions p(f |N) and p(N) are obtained. Then, they are
used to obtain the posterior distribution p(N,f |g) from which
the inference on N and f can be done. Let start by a very
classical case by assigning Gaussian probability distributions
on ε and ξ. Then, we have:

p(g|f , N, vε) = N (g|HNf , vεIM ),

and
p(f |N, vf ) = N

(
f |0, vf (DND

′
N )−1

)
where, first we assume known vε and vf . We will come back
to this point later.

We also assign a uniform prior for N in an appropriate range
[Nmin, Nmax] for example Nmin = N/8 and Nmax = N/2.
Then, we have:

p(N,f |g, vε, vf ) ∝ p(g|f , N, vε)p(f |N, vf )p(N)

∝ c(N) exp
[
− 1

2vε
‖g −HNf‖2 − 1

2vf
‖DNf‖2

] (6)

with c(N) a function which does not depend on f . For a fixed
value of N , we can recognize that:

p(f |g, N, vε, vf ) ∝ exp

[
− 1

2vε
J(f)

]
(7)

with

J(f) = ‖g −HNf‖2 + λ‖DNf‖2, with λ = vε/vf (8)

which makes the connection to the quadratic regularization
methods. However, here, we can also recognize that

p(f |g, N, vε, vf ) = N (f |f̂ , Σ̂) (9)

where

f̂ = argmin
f

{J(f)} = [H ′NHN +λD′NDN ]−1H ′Ng (10)

and
Σ̂ = vε[H

′
NHN + λD′NDN ]−1 (11)

which can be used to quantify the uncertainty of the solution.
For λ = 0 the obtained solution becomes the Least Squares

(LS) solution: f̂ = [H ′NHN ]−1H ′Ng. Looking to the struc-
ture of HN and [H ′NHN ], it is easy to write it:

f̃j =

{
1
K

∑K
k=1 g((k − 1)N + j), for j = 1, · · · , r

1
K−1

∑K−1
k=1 g((k − 1)N + j), j = r + 1, · · · , N.

(12)
When N is not known, the expression of the joint posterior is

p(N,f |g, vε, vf ) ∝ c(N)p(f |g, N, vε, vf ) p(N)

∝ (2π)−N/2|ΣN |−1/2 exp
[
− 1

2 (f − f̂)
′Σ̂
−1
N (f − f̂)

]
p(N)

(13)
with{

f̂ = [H ′NHN + λD′NDN ]−1H ′Ng

Σ̂N = vε[H
′
NHN + λD′NDN ]−1, λ = vε/vf .

(14)

The Joint Maximum A posteriori (JMAP) solution can be
defined as

(N̂ , f̂) = argmax
(N,f )

{p(N,f |g, vε, vf )} (15)

where we may note that, compared to the regularization
approach, here a prior for N is included, and more importantly
there are extra terms as functions of N which automatically
apply the Ockham Razor principle. An alternate optimization
of this criterion has been implementes in [14] which is
summarized here:

JMAP Alternate Optimization Algorithm:
1) for any N ∈ [Nmin, Nmax]:

– compute f̂ and Σ̂N given in (eq. 14).
– compute J(N) = (N2 ) ln(2π) +

1
2 ln |Σ̂N |

end
2) find N̂ = argminN {J(N)}.
3) compute the final shape f and posterior covariance Σ̂N

using (eq. 14) with N = N̂ .
As we can see, the great computational cost of this algorithm
is in the computation of Σ̂N for different values of N . This
is very costly. Here, we propose a faster version of this
algorithm which takes advantage of FT spectrogram to propose
an initial distribution to sample from and then obtain a good
approximation of the posterior distribution p(N |g) from which
we can infer on N . This new algorithm is summarized as
follows:
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New Algorithm:
0) Initialization: compute G = |FFT(g)|2, normalize it and

define the distribution p(N) ∝ G in the range N ∈
[Nmin, Nmax].

1) Generate samples from p(N)
– compute f̂ and Σ̂N given in (eq. 14).
– compute J(N) = (N2 ) ln(2π) +

1
2 ln |Σ̂N |

end
2) find N̂ = argminN {J(N)}.
3) compute the final shape f̂ and posterior covariance Σ̂N

using (eq. 14) with N = N̂ .
The steps 2 and 3 are the same as before. We can also use the
criterion in step 2 to update the probability distribution p(N)
and iterate steps 1 and 2. This remark brings us to a Gibbs
sampling scheme where becomes:

Gibbs sampling Algorithm:
0) as in previous algorithm and generate a sample from it
1) compute f̂ and Σ̂N given in (eq. 14) and generate a

sample f from p(f |N, g) = N (f |f̂ , Σ̂)
2) compute J(N) = (N2 ) ln(2π) +

1
2 ln |Σ̂N |, normalize

it and use it as p(N |f , g) and generate a sample N from
it.

After generating a great number of (f , N) from this Gibbs
sampling scheme, we can compute f̂ and N̂ .

As an extra advantage of this approach is also the fact
that it can be unsupervised by choosing appropriate prior
distributions for vε and vf (inverse gamma) and then obtain-
ing the expression p(f , N, vε, vf |g). We can then use this
to do inference on all the unknowns and then propose a
semi-supervised method. One method is to use a Variational
Bayesian Approximation (VBA). In this paper, we report only
the results with fixed value of vε = .001 and vf = 1.

III. RESULTS

To illustrate the performance of the proposed method, we
simulated several signals containing a few periods of known
shapes and obtained the period and the shape of these peri-
odic components with different approaches. Figure 2 shows
three examples in two contexts: High SNR=20dB and Low
SNR=5dB. In these examples, M = 96, N = 29. In the first
example, the shape is the sum of a sinusoid and its second
harmonic. In the second example the shape is a sum of positive
and negative Gaussian waveforms and in the third example, the
shape is a random shape waveform.

To illustrate the difficulties of the period estimation of these
signals, the magnitude of their DFT are shown in Figure 3. As
we can see, when the periodic shape is very regular (first and
second examples) and the SNR is good enough (left column),
then the DFT can show a maximum pic which can be used to
determine the period, but when the shape is not very regular
(third exampe), then this method cannot give the right answer.
We may also note that, due to the very limited observation
length and the fact that this length is not a multiple of the
period, the DFT has a bias (the right value is shown in color
red).

Fig. 2. Three examples of synthetically generated signals with two levels
of noise: a) sum of a sinusoid and its second harmonic shape, b) sum of a
positive and a negative Gaussian waveforms, c) a random shape waveform.
Left: high SNR ratio (20 dB), Right: Low SNR (5dB).

Fig. 3. The magnitude of the DFT of the three synthetically generated signals
in Figure 2. When the periodic shape is very regular (first and second lines)
and the SNR is good enough (left column), then the DFT can show a maximum
pic which can be used to determine the period, but when the shape is not very
regular (third line), then this method cannot give the right answer.
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In the following Figures, we illustrate the results obtained
by the proposed algorithm, showing the observed data, the
criterion for period selection and the estimated shapes com-
pared to the truth with error bars computed using the diagonal
elements of the posterior covariance.

A great number of other simulations are done to show:
– the performances of the algorithms as functions of SNR,
– the number K =M/N of the periods in observed signal,
– sensitivity of the results with respect to the hyperparameters
vε and vf and their ratio λ = vε

vf
, and

– sensitivity of the results with respect to different realization
of the noise.

We also compared the convergency and the computational
costs of the proposed algorithms. However, we cannot include
them due to the lack of space, but they are available in a paper
which will soon be submitted.

a) J(N) b) f̂(t) with error bars

Fig. 4. Three examples of period estimation results on simulated high SNR
data shown on Fig 2: a) criterion for estimation of the period, b) Estimated
shape

Figure 6 shows the performances of the proposed method
as a function of SNR. As we can see, almost in all cases, the
estimation of the period (dn = N̂ − N ) was exact, but the

estimation error of the shape (df =
‖f̂−f‖
‖f‖

) increases when
SNR decreases.

Figure 7 shows the performances of the proposed method
as a function of the relative length of the observed signal M

a) J(N) f̂(t) with error bars

Fig. 5. Three examples of period estimation results on simulated low SNR
data: shown on Fig 2: a) criterion for estimation of the period, b) Estimated
shape

over the period N . As we can see, here too, almost in all
cases, except the case where M/N¡3, meaning that we have
less than 3 periods in the the observed signal, the estimation
of the period was exact. However, the estimation error of the
shape does not change too much with M/N .

Figure 8 shows the log-posterior ln p(N |g) for one of the
examples

IV. CONCLUSION

We considered the problem of the estimation of an arbitrary
shaped periodic component in a short duration noisy signal.
As for such short signals, Discrete Fourier Transform (DFT)
methods cannot give satisfactory results, we proposed a direct
nonparametric forward model linking the unknown quantities
(period and nonparametric shape of the periodic component)
to the observed noisy signal. Based on this forward model,
we proposed a Bayesian framework, where we obtained an
expression for the joint posterior distribution of the period
and the shape which is then used to estimate them. Using
an approximate Bayesian computation approach, we proposed,
in a first step, an algorithm which first estimates the period
and then the shape of the periodic component. The cost of
the computation of this algorithm is very high due to the
exploration of all the possible values of the periods with given
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Fig. 6. Performances of the proposed method as a function of SNR. As we
can see, almost in all cases, the estimation of the period was exact (dn=0),
but the estimation error (df) of the shape decreases when SNR increases.

Fig. 7. Performances of the proposed method as a function of the ratio
M/N . As we can see, almost in all cases, the estimation of the period was
exact (dn=0), but the estimation error (df) of the shape decreases when SNR
increases.

precision to compute its posterior probability, from which we
look for the MAP estimate. When the period is estimated, then
the estimation of the shape is easy. Trying to reduce this cost,
a new faster algorithm is also proposed using the absolute
periodogram of the signal as an initial probability distribution
for the period from which samples are generated and used for
a second stage where this distribution is updated. Finally, a
Gibbs sampling scheme is proposed for exploring the the joint
posterior space. Some simulation results with different simple
and smooth or arbitrary random shapes showed the efficiency
of the proposed method.
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