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Abstract—This paper studies the lossless compressibility of raw
sensor images acquired by plenoptic cameras, when optimally
interpolating the microlens images in terms of already encoded
microlens images. The geometrical information necessary for
splitting the sensor image into projections of microlenses, together
with a relatively small bitstream for encoding the raw image at
the microlens centers are encoded as a first stage. The scanning
order for sampling the data from the sensor follows row-by-row
the approximate hexagonal lattice pattern of the microlenses,
and the pixels inside each microlens are scanned in an ascending
spiral order. The predictive encoding of a pixel from a microlens
block uses the similarly located pixels (possibly slightly shifted)
in the blocks from nine closest causal microlenses (those already
encoded) and the pixels from its own microlens located in the
encoded part of the spiral. A minimum description length optimal
sparse predictor is designed for each microlens. The sparsity
masks and prediction coefficients are encoded in a second stage
and the prediction errors at every pixel are finally encoded
in a third stage, in a view-by-view order (a view index being
determined by the pixel’s index in its block), using contexts
accounting for the magnitude of errors at views already encoded.
The experimental results show better performance than the JPEG
2000 image standard applied on the raw image.

I. INTRODUCTION

A plenoptic camera interposes between the sensor and the
optical lens system of a traditional camera an m, X m,-
array of microlenses (in the order of hundreds of thousands
microlenses), that will record at certain pixels in the sensor
the light coming from specific directions. Encoding the raw
image obtained at the sensor is studied in this paper. Loss-
less compression of raw sensor images from contemporary
plenoptic cameras was discussed earlier in [1], where the
sensor image is split into four subimages, one for each Bayer
phase, then repetitive rectangular block structures are searched
in the image, and the differences between matching blocks
are encoded using Lempel-Ziv coding. We present here a
more involved compression scheme, exploiting the known
arrangement of microlenses in a hexagonal lattice, performing
sparse prediction for designing the best interpolation between
the approximate hexagonal microlens images (MI) to obtain a
prediction for the MI to be encoded, and encoding the errors
using context encoding.

The raw image is obtained by recording the light coming
from different directions, at the pixels under each microlens.
We deal with encoding the raw image, which is an n, X n. ar-
ray of scalar values represented on 10 bits, where demosaicing
was not applied yet. From this primary image one can obtain
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by demosaicing and devignetting the RGB lenslet image and
by further processing the LF structure of subaperture images.
The Bayer filter of the camera produces a checkerboard
pattern, that is visible even for the white areas of the scene.
Each microlens is visible in the raw image as a circular pattern
with a diameter of about 15 pixels. For example in Fig. 1 (a)-
(c) we show one raw image at several zoom levels.

We take advantage of the prior knowledge of the geometry
of microlens arrangement, so that the repetitive patterns are
well defined a priori and no expensive block matching process
needs to be carried on. The basic geometric fact to be used
is that the microlens centers are located at the nodes of a
hexagonal lattice, defined in the coordinate system of the
sensor. The technological reason is that the hexagonal lattice
of disk centers offers the best coverage of the sensor by disks
of a given radius.

The hexagonal lattice arrangement of the microlenses cen-
ters is illustrated in Fig. 1 (c)-(d), where the Voronoi cells
determined by the centers are superimposed over the sensor
image, showing a very good match with the circular patterns
readily identifiable on the sensor image. We refer in the
following loosely to each hexagonal Voronoi cell (or to the
circularly shaped set of pixels inscribed in it) in Fig. 1 (c) as
a microlens image (MI), but more precise definitions will be
introduced later. The sensor image is hence decomposed into
a collection of MIs. The main theme of this paper is designing
optimal interpolators for the pixels of one MI as functions of
the pixels in other MlIs.

The paper is organized as follows: Section II introduces
first the data structures for sampling the light field from the
raw image. Then the prediction problem for interpolating one
MI from neighbour MIs is presented and shown to be solved
as a sparse regression modelling problem. In Section III the
encoding and decoding algorithms are presented and Section
IV presents experimental results, with Section V drawing
conclusions.

II. SAMPLING THE SENSOR IMAGE INTO A PLENOPTIC
LIGHTFIELD DATA STRUCTURE

In this section we exemplify the numerical values of pa-
rameters with those taken from one raw LFR data structure of
a Lytro Illum camera, corresponding to the Bikes test image
from the dataset used in the experimental section.
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Fig. 1. (a) Raw sensor image “Bikes” having at each pixel a graylevel value
represented on 10 bits. (b) Zoom in the rectangular area marked in a), where
the circular patterns (of diameter about 15 pixels) are the projections of the
microlenses on the sensor; (¢) Zoom in the rectangular area marked in panel
b), where the hexagonal grid of microlense centers is estimated with the
parameters W provided by the lightfield processing toolbox [2]; the centers
have integer coordinates marked by red circles; the Voronoi cells determined
by the lattice of centers are drawn with blue lines; (d) The pixels marked with
same color are alocated to same Voronoi cell. The pixels equally close of two
Ml-centers are allocated to the MI appearing first in the scanning order. The
smallest number of pixels of a microlens Voronoi cell is 168, the largest is
189, and the most frequent (in almost half of the cases) is 175.
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Fig. 2. Spiral scanning of a microlens block. The template T alocates an
index T'(k,1) € {0,...192} to the pixel at (k,1), e.g. T(10,8) = 0 and
T(10,7) = 1. The template selects 193 pixels: the first 129 pixels, reached
by the blue arrows in the spiral, are contained in a circle of radius 6.4 centered
at (0,0); the next 56 pixels, reached by the arrows marked in red, have the
centers within a circle of radius 7.7; the last 6 pixels in the template, marked
from 185 to 192 and reached by black arrows, are normally outside the area
covered by the microlense, and are added only to cover the interstitia between
the circular microlenses. The elements of each microlens block (3, j) selected
by the template are forming the 192-dimensional vector v (7).
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The (n, X n.) = (5368 x 7728) sensor image Y, having
elements denoted Y (x,y), records the light coming through
an array of microlenses. The centers of the microlenses are
arranged in a (m, X m.) = (434 x 541) hexagonal grid, where
one row contains m, centers equally spaced at L,, ~ 14.29
pixels apart, and the m, rows are equally spaced vertically
at distance @Lm ~ 12.37. In average one MI should be
allocated 176.7 pixels.

Each node in the ideal hexagonal grid of centers has real
valued center coordinates (x((i,7),yo(4,7)), that are fully
determined by the parameters of the hexagonal grid, ¥,, =
(L, ho, Vo, 0y ), estimated using the Light Field Toolbox!,
from the calibration files provided by the camera manufacturer
together with each camera. The parameters include a rotation
angle v, and the horizontal h, and vertical offset v, of the
hexagonal grid with respect to sensors coordinate system.

These parameters are needed along with the raw image for
obtaining the rectified lightfield image, by the involved pro-
cessing described in [2]. No usage of the raw data is possible
without the knowledge of W,,, hence these parameters are
always known and are transmitted to the decoder. In this paper
we use instead of ideal real valued centers (z (%, j), ye (4, 7))
their values rounded to integers, denoted (x¢ (3, ), yco (4, 5))

We define a light field structure, Ly (k,[,,7) where (k,[)
are indices of a subaperture image (a.k.a view), and (4, j) are
the pixel indices in the view. The lightfield structure organizes
the pixels from the raw sensor image, by covering the sensor
image with the microlenses, where the integer centers of
the microlens(é, j) in the coordinate grid of the sensor are
(zc(i,7),yc(i,7)). The sampling equation for defining the
lightfield structure is

Ly(k,l,i,j) = Y@C(%J)"‘k_kanC(Z’J)‘f‘l_lO)

The goal is covering the sensor image by disks of pixels with
centers at (x¢(4,7),yc(4,7)). We note that on a discrete grid
a “circularly” shaped set of pixels is well approximated by
the regular octagon which includes all 129 pixels along blue
arrows in Fig. 2, but that disk template will leave uncovered
a large proportion of pixels from the sensor. The next largest
disk is a regular octagonal structure of pixels that includes
also the pixels marked by red arrows, containing 185 pixels.
Two such large disks, when placed at the neighbor centers,
will sometimes overlap several pixels from their outer borders.
Since we need to represent each pixel in the sensor image as
belonging to one disk, we decide to choose the 185 pixels disk
as a basis for the sampling template.

We introduce the sampling template illustrated in Fig. 2,
where the used pixels are marked in the rectangle £ =
1,...,19, 1 =1,...,15 with labels from 0 to K = 192. The
center of the template is at kg = 10 and [y = 8. The main
part of the template is formed within the 15 x 15 square from
rows 3 to 17 and contains K; = 185 pixels; the additional
pixels labeled 185 to 192 in rows 1,2,18,19 are covering

Thttps://se.mathworks.com/matlabcentral/fileexchange/49683-light-field-
toolbox-v0-4
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areas outside the circles associated to microlenses, but which
anyway must be encoded to have a complete representation of
the raw sensor image for lossless compression. The index in
the template will be identified with the index of a direction
of view, and plays an important role in the conditional coding
part of our encoding algorithm.

The chosen template covers sufficiently well the hexagonal
Voronoi cells, which are of sizes varying from 164 to 189
pixels (see Fig. 1 (d)). To illustrate the covering realised by
the template, in the Fig. 2 it was shown as a background the
worst case, of a Voronoi cell drawn in blue lines having the
largest number of pixels, 189. In this worst case, a few pixels,
with centers marked in green, are not covered by the template.
These non-covered pixels, together with some pixels at the
border of the sensor are encoded in an initial phase (Stage I
of Algorithm 1).

The 185 pixels at the pairs (k,!) within the wide circle of
radius k2 + 12 < 7.7% are pixels with reliable measurements,
since they are the pixels under the circular shape of the
microlens, and are receiving much more light than the pixels
in the corners of the 15 x 15 square. Since not all pixels in the
rectangle addressed by (k, 1) are associated with the microlens
(i,7), the spiral indexing function T'(k,l) € 0,...,192 will
be used to sample from Y the block of pixels belonging to
microlens (i, j), under the form of a 193-dimensional vector
v(49) with the elements indexed by 7 = T'(k, 1),

(6:7) LY(kvlviaj)

V(i)
= Y(l’c(l,j)+k—k0,yc(2,])+l—l0), (1)
(4,4)

where the first element, v/, represents the value at the
central pixel of microlens (i,j) and the next elements,

ng 9, ng ). ... are advancing along the spiral. Denoting the

template subindices (k,,l;), in terms of the template index

T(k,l;) = 7 we can write directly the spiral elements as
Vi = Y (ae (i, ) + kr = ko,ye (i, ) + 1y — o).

The first elements vo’ in all microlenses are encoded in
the first stage as a side information, and what remains to be
encoded at each microlens is the K = 192-dimensional vector
[ng b v%’ﬁ )] which is denoted for brevity vg 7) | while
the full vector is denoted v{'7.

For realizing flexible interpolation functions one needs to
sample the sensor image using the spiral template centered
at arbitrary coordinates (x,y) in the sensor image; hence we

introduce for all 7 =0,...,192 the sampling function:
Y(x+k7_k07y+lT_10)7 (2)

which constructs the 193-dimensional vector w(*¥) corre-
sponding to the spiral located at any coordinates (x,y) in the
raw sensor image. For all 7 = 0,...,192 this vector will be
identical to the vector (1) at the center of the microlens (4, j):

J

ngny) —

wlre ) ve 0.0)
= Y(IC(Zaj) + kT

Now we can formulate the regression problem as predicting
the vector v1 192 (the elements labeled 1,...,192 from the

— ko, yo(i, ) + 1y — lg) = viB9),
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spiral at the microlens (i,7)) as a linear combination of the
following vectors: 1) the all-1 column vector 1 of length K,
accounting for a possible bias term; 2) the vector containing
the elements labeled 0, ..., 191 of v(»7) which ensures pre-
dicting the 7th element of v(*) by its (7 — 1)th element, i.e.
each element in the current spiral is predicted by the value
of its pre/ceding eller/nent in the spiral; 3) finally the vectors
(e (g Frowe (.70 F80) realizing cross- prediction based at
the spirals at the neighbor microlenses (i’, j') and the spatially
shifted versions of those spirals by maximum shifts of 1 in all
cardinal directions. The prediction can be written formally as
the linear combination
(89

Viige = %o 1+ - Vo 191 3
n Z (zc (.3 +xo,yc (i',5")+yo)

1:192
(#,5") € Nar(i, 4)
(w0, %0) € Ns

O(i—it j—i" wo0) °

where the neighbor set Nj(i,j) selects the nine causal
neighbor microlenses, as shown in Fig. 3 (b). Due to the
hexagonal grid properties, odd and even rows have their
indices shifted by half L,,, so that neighbors in the lattice
get different indices depending on the parity of j: for odd
j the set is Ny(4,5) = {(i,5 — 2),(5,5 — 1), (i — 1,5 —
2), (i — 1,5 = 1), (i = 1,5), (i — L,j + 1), (i — 2,5 — 1), (i -
2,79),(i — 2,5 + 1)}, while for even j the set is almost the
same, with the change that the elements in the row 7 — 1 are
replaced by (i—1,7—1),(i—1,5),(i—1,54+1),(i—1,7+2).
The set of spatial displacements (zg,yo) contains nine pairs,

Ns = {(z0,y0)|z0 = =1,0, 1350 = —1,0,1}.
The prediction residuals
€ = ngzijg)z Agzijg)z 4)

are computed for all microlenses and then encoded and trans-
mitted to the decoder, as presented in the next section.

At the decoder the prediction in (3) is performed element by
element along the spiral, and once the 7th prediction Vv, was
computed, the element v can be perfectly reconstructed using
the 7th residual €., hence v, can be used in the prediction of
next element, V1.

The vectors in the right hand side of (3), i;e., the vector 1,
v{i0) and all 81 vectors wiZG( i) Fe0weiN+v0) oy pe
arranged as columns in the regression matrix A. Correspond-
ingly, the parameter vector ® in the regression problems has
1 and 11 as the first two elements, and the rest of 81 elements

are all coefficients 0(;_;r ;_j 4,4, that appear in (3). For the
microlens (i, j), at the encoder the true values d = vg(ng)) are

known, and one needs to find the parameters ® so that
d=A0O +¢ ®))

with the optimality criterion being the overall codelength
needed for encoding the residuals € and the parameters ©, that
needs to be minimized. Since the number of unknowns in (5)
is rather small, here there are 192 unknowns in the spiral, and
the number of unknown parameters in @ is high, in here 83
parameters, the problem of selecting the relevant regressors is
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Fig. 3. Example of block prediction. The block marked with the red spiral
in panel b) has to be encoded, conditional on its nine closest causal neighbor
blocks (marked with spirals of various colors). The original blocks are shown
in panel a), the block to be encoded being quite similar to several of the
regressor blocks. Each neighbor block is included in the regression matrix in
nine copies, with displacements of maximum one in each axis and direction.

essential. Hence we consider solving (5) as a sparse regression
problem where only a small number of regression coefficients
are non-zero, and we solve the sparse regression using the
minimum description length sparse prediction approach used
in [3]. Our sparse predictor implementation is very similar to
[3], except that instead of using OMP in the iterative loop for
choosing the regression elements we use fast order recursive
least squares as in [4]. The optimal sparse solution (v, 8) is
defined by the binary selector vector -y, also called sparsity
mask, which selects from the full regressor vector © the
nonzero coefficients, 6 = ©..

The previous presentation assumed that all the 192 elements
in the vector v{(7)) are unknown and need to be encoded. Due
to the asymmetries of the Voronoi cells, some of the elements
of vie29) and v{(2)) have some pixels in common, which
are encoded as part of MI (i — 1, j) and need not be encoded
in MI (4, 7). This is tackled very easily, when processing MI
(i,4), simply by removing from d and A in the regression
system (5), the rows corresponding to the already encoded
pixels. Hence, the number of equations in the sparse regression
system varies from one MI to another.

III. THE ENCODING AND DECODING ALGORITHMS

First the encoder writes the parameters of the hexagonal
lattice ¥ (six floating point numbers) into the bitstream, and
hence the decoder can identically reconstruct the partition of
pixels into MIs using the template function.

Then the encoder encodes the raw image values
Y(xc(i,7),yc(4,4)) at all center pixels, e.g., by JPEG 2000.
The reason for transmitting the centers in the first pass is to be
able to perform prediction within the microlens spiral, starting
from the known value of Y at the microlens center and then
advancing in spiral order and predicting the element 7 based
on the element 7 — 1. This is implemented by the second term
in the predictor (3).

The second stage transmits the value of Y at the irregular
pixels, where we cannot apply sparse predictive coding, due
to missing conditioning information, and also the values of
pixels non-covered by a template (e.g the green pixels in Fig.
2). The microlenses located at the sensor borders (rows i =
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1,2,3,m, — 2,m, — 1,m, and columns j = 1,2,3,m, —
2, m.—1,m,.) are checked if they have enough pixels at which
to apply the full prediction model (3) or a partial model using
only one MI neighbor. If in the current microlens there are not
more than 60 pixels for which the model can be applied, all
microlens pixels are transmitted in the first pass, without sparse
prediction. The sequence of first pass pixels is denoted F =
ZFy; - -5 ZF,, and their locations are identically found by the
decoder, by analyzing the geometry of the hexagonal grid. The
encoder transmits then to decoder the values in the sequence
F differentially, zf, — 2z, , using arithmetic coding, resulting
in £(F) bits. The decoder at this time has information about
Y at the centers of the microlenses and at the location of
irregular pixels.

The third stage is the regular sparse predictive modelling,
which is done in a line-by-line scanning order of the mi-
crolenses, as presented in the previous section. In this third
stage the sparsity masks and prediction coefficients for all
microlenses are encoded.

The fourth stage is encoding of the prediction errors (4),
which are seen as an (n, X n.) image R (residual image) that
needs to be transmitted independently of the previous predic-
tion stage. The same sampling function used for Y is used to
obtain a lightfield data structure, denoted {Lg(k,,%,j)}, cor-
responding to R. The 7-th image, Lg(k-,l,-, "), in the data
structure is encoded conditional on the context image E,_1,
defined as the average of log-absolute values of elements in
Lr(k;—1,l:—1,-,+). For a robust average evaluation, a median
operator is used over the defined elements in a 5 x 5 windows.

The pseudocode of the algorithm is shown as Algorithm 1.

A. Decoding the image

The decoding algorithm performs similar operations as
described for encoding (reading the Algorithm 1 and replacing
“encode” by “decode”). The only major change is that Stage
IV is performed at the decoder before Stage III, since the
image of prediction errors R needs to be the first decoded,
which is possible, not needing elements of the image Y. Then,
the decoder will reconstruct the image Y, by scanning in the
same way the sensor image as in the Stage III of the encoder
and using the decoded predictor parameters and the already
reconstructed values from Y (reconstructed using all already
known residuals form R) for performing the prediction.

One important implementation detail is that a (n, X n.)-
binary image I, marking the available pixels when decoding
the current MI, is kept at both encoder and decoder, being
updated as soon as a pixel of Y can be reconstructed. When
constructing the regression matrix A for a microlens image,
we check at both encoder and decoder, through the marking
in I, the availability of the elements to be included in A. If
at least one element in a column of A is not available, that
column is removed from the matrix A. This solves conflicting
situations, e.g., when the spiral from MI at the left of the
current MI is shifted one pixel to the right, it may include one
or more elements from the current MI, which are not available.
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Algorithm 1 Encoder

1: Read the (n, X n.) raw sensor image to be encoded, Y,
with Y'(i,j) €0,...,210 — 1.

2: Stage I. Estimate from the LFP structure the parameters
W of the (m, x m,) hexagonal grid of microlens centers

I.1 Encode the parameters W.

12 Encode by JPEG 2000 the raw image values
Y(zc(i,7),yc(i, 7)) at all center pixels from C.

Total codelength at Stage I: L(C).

3: Stage II. Go over the hexagonal grid of microlens centers
in row-wise order, and determine the sequence of first pass
pixels, Fzp,,...,zp,,, which are the pixels that are not
reached by any template overlaid at the centers from C,
or are within the irregular MI at the border of the image.

II.1 Encode the pixels in F differentially, zp, — zF, ,
using arithmetic coding, resulting in £(F) bits.
4: Stage III. Go over the hexagonal grid of microlens cen-
ters from C in row-wise order, and process the current
microlens block, MI (i,j).

III.1 Formulate the regression problem, by selecting the
possible regressors as in (3).
II1.2 Solve the sparse regression problem (5). Encode the
parameters of the sparse predictor at the current MI (i,j)
(sparsity mask -, its size, |[y| = >, 7, and non-zero
coefficient values 0 = ©.).
II1.3 Compute the predictions for the current block with
its optimal sparse predictor parameters. The prediction
residual for pixel Y (z,y) in the block is stored in the
residual image R(z,y).
Total codelength at Stage IIT: L(v) + L(|v]) + £(0)
5: Stage IV. Resample the image of residuals R into a
lightfield structure Lg(k,,l-,4,7), V7 =1,...,192.
IV.1 For 7 € {1,...,192}
For all (4,j) € C encode Lr(k;,l;,,7) using
E;_1(i,7) as a context (initializing Fy(i,7) = 1).
IV.2 Compute the (m, X m.) context image E, as the
average of log-absolute-errors, using a 5 X 5—median
filter on the image log, |Lr(k-, L,z :) + 1].
6: Overall codelength of encoded file is
Lsmo = L(C)+ LIF) + L) + L(v) + £(6) + L(R)

IV. RESULTS

We use data from Light-Field Image Dataset?, that contains
raw data captured with a Lytro Illum camera and select the
same subset of twelve scenes as in the recent challenge at
ICME 2016. Table I presents the breakdown of the overall
codelength on the various partial codelengths for each encod-
ing stage, showing the very small part of the model cost in
the overall bit budget (including the cost of sparsity pattern
~, of its size || and of prediction coefficients 6).

2 Available at http://mmspg.epfl.ch/EPFL-light-field-image-dataset.

ISBN 978-0-9928626-7-1 © EURASIP 2017

Preliminary Info Sparse predictors Resid. Total
Im_|[ £(C) [ £(F) | £(vD [ £0v) [ £(6) [ L®R) | Lsmc
1 0.042 0.056 0.013 | 0.104 | 0.172 | 5.378 5.764
2 0.041 0.046 0.013 | 0.101 | 0.166 | 5.199 5.566
3 0.042 | 0.051 0.013 | 0.099 | 0.164 | 5423 5.793
4 0.041 0.050 0.013 | 0.099 | 0.162 | 5.476 5.840
5 0.037 0.045 0.012 | 0.099 | 0.160 | 4.816 5.169
6 0.040 | 0.060 0.014 | 0.107 | 0.177 | 5.310 5.708
7 0.045 0.065 0.012 | 0.097 | 0.158 | 6.170 6.547
8 0.041 0.059 0.014 | 0.107 | 0.178 | 5.323 5.722
9 0.042 | 0.055 0.014 | 0.106 | 0.178 | 5.543 5.939
10 | 0.041 0.064 0.013 | 0.103 | 0.170 | 5.371 5.762
11 | 0.040 | 0.063 0.013 | 0.102 | 0.168 | 4.741 5.127
12 | 0.043 0.050 0.013 | 0.107 | 0.177 | 5.396 5.786

TABLE I

BREAKING DOWN THE TOTAL CODELENGTH IN BPP OF THE PROPOSED
METHOD (SMC) INTO INDIVIDUAL ELEMENTS

Image | Lsyco | Lip2 | A=Lype—Lsuc | A%
1 5.76 6.24 0.48 7.62
2 5.57 5.74 0.17 3.04
3 5.79 5.93 0.14 2.32
4 5.84 6.02 0.18 2.99
5 5.17 5.70 0.53 9.31
6 5.71 6.69 0.98 14.69
7 6.55 7.24 0.69 9.57
8 5.72 6.79 1.07 15.72
9 5.94 6.49 0.55 8.48
10 5.76 6.23 0.47 7.51
11 5.13 6.08 0.95 15.68
12 5.79 6.67 0.88 13.25

TABLE II

COMPARING THE TOTAL CODELENGTH IN BPP OF THE PROPOSED METHOD
AND THE JPEG 2000 METHOD

Using the standard JPEG 2000 in the form implemented in
Matlab function imwrite/imread one gets the column marked
as JP2 in Table II, where the results of the proposed method,
denoted here sparse modelling compression SMC are also
presented, showing improvements over all files with respect
to the standard JPEG 2000. All encoded files were checked
for lossless decoding of the original.

V. CONCLUSIONS

We studied here the compressibility of the raw image, and
we showed that it is compressible to about 5-6 bpp, much
better than the uncompressed representation using 10 bits. The
proposed method surpasses the performance of the standard
JPEG 2000 over all tested images.
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