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Abstract—Nonlinear acoustic echo cancellation (NAEC) can
be mainly addressed by solving two different sub-problems: the
estimation of the acoustic impulse response and the modeling
of the nonlinearities rebounding in it, mostly caused by the
electroacoustic chain. Both the modeling processes share an
important characteristic: the majority of the parameters to be
estimated are very close to zero, with only a small fraction of
them having non-negligible magnitude. In this paper, a novel
NAEC model is proposed taking into account both the above
sub-problems under a joint optimization problem. In particular,
the proposed model involves two separate and parallel filters,
one mainly focusing on the estimation of the acoustic impulse
response (AIR) and the other one aiming at the nonlinear
modeling. In order to optimize the modeling processes, both the
filters are adapted by using a joint proportionate algorithm.
Experimental results prove the effectiveness of the proposed
model in NAEC problems.

I. INTRODUCTION

The presence of nonlinear acoustic echo has always been

considered a difficult problem to be solved and it still repre-

sents a challenging research topic, especially because of the

widespread use of commercial hands-free speech communi-

cation systems. Nonlinearities may be produced by different

sources, ranging from loudspeakers, to vibrations of device

materials, such as plastic enclosures or displays of mobile

devices [1]. Each different device may generate a certain

nonlinearity, whose level may also vary in time. Moreover,

large speech signal peaks may be strongly corrupted. This

makes online modeling of nonlinearity a quite difficult task.

In the recent years, several NAEC models have been

proposed. State-space based models have received increasing

attention, such as those focusing on Bayesian learning [2], [3]

or on the elitist particle filter [4]. In [5], the NAEC approach is

based on the representation of the physical model of the loud-

speaker. Other NAEC models have been expressly designed

for mobile devices [6]–[8]. Even a hardware solution based

on voltage and current feedback values has been proposed

[9]. However, most of the NAEC models introduced in the

last years are based on particular classes of linear-in-the-

parameters (LIP) nonlinear filters, including recent advances

on Volterra filters [10], [11], kernel adaptive filters [12], [13],

Hammerstein spline adaptive filters [14], or parallel Hammer-

stein architectures [15]. In this work, a new NAEC method

based on LIP nonlinear filters is proposed. In particular, we

consider the class of functional link adaptive filters (FLAFs).

The FLAF was firstly introduced as an effective method for

nonlinear modeling [1], [16], [17]. The split FLAF (SFLAF)

scheme was proposed to better exploit the capabilities of

linear and nonlinear filtering in parallel. While in [1], [16] the

adaptive algorithms for the linear and nonlinear branches were

chosen independently of each other, here we aim at providing

an optimized learning algorithm involving both the linear and

the nonlinear adaptations.

In order to derive the joint learning algorithm, we take into

account some considerations on both the linear and nonlinear

modeling. In NAEC, both in the estimation of the acoustic

echo path and in the modeling of the nonlinearities, an un-

known response is composed of a few number of coefficients

with large magnitude, but most of them have a value very

close to zero. This permits to obtain performance improvement

when adopting any regularized learning solution. In particular,

the estimation of the AIR has been proved to be robust to

disturbing signals when regularization is taken into account in

the least-square solution [18]–[22]. On the other hand, in the

nonlinear modeling, the expansion of the input signal may also

show some sparse behavior, and this has encouraged the use of

proportionate algorithms even for LIP nonlinear filters [23]–

[27]. Therefore, in this work, we propose an SFLAF model

for NAEC that is capable of exploiting the capabilities of

both the linear and nonlinear modeling, by providing a general

formulation for the joint optimization problem involving both

the estimation processes.

The paper is organized as follows. In Section II, the

SFLAF architecture is briefly introduced. The proposed full

proportionate algorithm for the SFLAF scheme is derived in

Section III. In Section IV, experiments show the effective

results of the proposed method, and, in the end, in Section V

our conclusions are drawn.

II. THE SPLIT FUNCTIONAL LINK ADAPTIVE FILTER

The output of a real-world system to be identified is very

often generated by any combination of linear and nonlinear

elements, as in the case of online applications like NAEC.

For this reason, an appropriate choice for the modeling of real-

world systems is to adopt an architecture based on the split

functional link adaptive filter (SFLAF). The SFLAF scheme
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Fig. 1. The SFLAF architecture adopted for the proposed algorithm.

[1], represented in Fig. 1, is composed of a linear branch

in parallel with a nonlinear one. The linear branch simply

involves an adaptive filter, aiming at modeling the linear part of

an unknown system response. On the other hand, the nonlinear

branch can focus on the nonlinear modeling, without any need

to estimate the linear components of the AIR. In particular,

the nonlinear branch is an LIP nonlinear filter, composed of a

functional expansion block (FEB) and an adaptive filter.

Let us consider the input sample x [n] to the unknown

system. This is collected in a linear input buffer xL,n ∈
R

M =
[
x [n] x [n− 1] . . . x [n−M + 1]

]T
, where M

is the buffer length, i.e., the length of the coefficient vector

wL,n ∈ R
M =

[
wL,0 [n] wL,1 [n] . . . wL,M−1 [n]

]T
.

Then, the linear output is the result of the filtering yL [n] =
xT

L,nwL,n−1. The input sample x [n] is also received by the

nonlinear branch and collected in another buffer xFL,n ∈
R

Mi =
[
x [n] x [n− 1] . . . x [n−Mi + 1]

]T
, where

Mi represents the length of xFL,n. This signal is processed by

the FEB, which is a nonlinear block containing a series of

functions, called functional links, satisfying universal approx-

imation properties. The set of functional links is denoted as

Φ =
{
ϕ

0
(·) ,ϕ

1
(·) , . . . ,ϕ

Qf−1
(·)
}

, where Qf is the number

of different functional links contained in the set. The i-th
element of xFL,n is expanded by the functional links of Φ,

thus producing a vector gi,n ∈ R
Qf :

gi,n =




ϕ
0
(x [n− i])

ϕ
1
(x [n− i])

...

ϕ
Qf−1

(x [n− i])


 . (1)

The concatenation of gi,n, for i = 0, . . . ,Mi − 1, yields the

expanded buffer gn ∈ R
Me :

gn =
[
gT
0,n gT

1,n . . . gT
Mi−1,n

]T

=
[
g0 [n] g1 [n] . . . gMe−1 [n]

]T
.

(2)

In (2), Me ≥ Mi is the length of the expanded buffer. It is

worth noting that Me = Mi if Qf = 1.

Functional links may be derived by a large variety of

nonlinear expansions. In this work, the functional links of

the FEB are generated by a nonlinear trigonometric series

expansion, i.e.:

ϕ
j
(x [n− i]) =

{
sin (pπx [n− i]) , j = 2p− 2
cos (pπx [n− i]) , j = 2p− 1

(3)

in which p = 1, . . . , P is the expansion index, P is the

expansion order, and j = 0, . . . , Qf − 1 is the functional link

index. It is easy to verify that, in this case, the functional link

set Φ contains Qf = 2P elements.

In the described model of the nonlinear branch, the linear

part of a system to be identified can be modeled by a separate

filter and therefore the expanded vector gn contains nonlinear

elements only, as we describe in the next subsection. The

trigonometric expansion in (3) is memoryless, since there are

no cross-products with past samples. However, the trigonomet-

ric expansion can be easily extended to include any memory

(see [1] for a detailed explanation).

The resulting vector gn is filtered by wFL,n ∈ R
Me =[

wFL,0 [n] wFL,1 [n] . . . wFL,Me−1 [n]]
T
, thus providing the

nonlinear output yFL [n] = gT
nwFL,n−1. The overall SFLAF

output signal is obtained by summing the individual branch

outputs, i.e.:

y [n] = yL [n] + yFL [n] . (4)

As a consequence, the error signal, which is used for the adap-

tation of the two filters, can be achieved as e [n] = d [n]−y [n].
The filter updates can be performed by adopting any adaptive

algorithm (see for example [28], [29]), including proportionate

algorithms that have been widely employed in AEC [20], [30]–

[32]. In particular, in the next section we derive a regularized

algorithm for SFLAF that involves proportionate adaptation

in both the branches; we refer to such SFLAF as “full

proportionate”.

III. FULL PROPORTIONATE SFLAF

In NAEC problems, the modeling of the linear part of a

system is required mainly to estimate the AIR. However, a

nonlinear modeling is also required to tackle the distortions

introduced in the echo signal by the unknown system. An

AIR is known to show often some sparse characteristics [32],

because the most significant part of it is contained in its head,

containing both the direct path and the early reflections of an

acoustic space. On the other hand, since the degree and type

of a nonlinearity is not known a priori, it is reasonable to

overestimate the number of functional links, so that the optimal

solution for wFL,n can be highly sparse. In both the linear

and nonlinear modeling, a performance improvement might be

achieved by considering a regularized learning solution. To this

end, a “full” regularized adaptive algorithm can be developed

for the SFLAF scheme to give higher importance to the filter

coefficients showing a significant performance contribution in

both linear and nonlinear modeling.

A. Joint derivation of the full PSFLAF

The update equations of the two filters wL,n and wFL,n can

be achieved by a joint derivation. The optimization procedure

involves a formulation similar to [23], but with a novel result-

ing derivation due to the full weighted mask. Let us define the

following joint input and weight vectors, respectively:
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xn ∈ R
M+Me =

[
xL,n

gn

]
(5)

wn ∈ R
M+Me =

[
wL,n

wFL,n

]
. (6)

The output signal of the full PSFLAF can be now obtained as

y [n] = xT
nwn−1, which is equivalent to (4).

We can denote the following difference vector:

w̃n = wn −wn−1. (7)

Taking into account the least-perturbation property and the

natural gradient adaptation, as suggested in [23], it is possible

to express the constrained optimization problem as:

argmin
wn

‖w̃n‖2Q−1

n
(8)

s.t. ε [n] = 0

where Q−1
n is a distance correction matrix with respect to the

Euclidean metric, and the constraint ε [n] = 0 can be derived

from the a posteriori output estimation error signal:

ε [n] = d [n]− xT
nwn. (9)

The problem in (8) can be solved by deriving the Lagrangian

function:

L [n] = w̃T
nQ

−1
n w̃n + λ

(
d [n]− xT

nwn

)
(10)

where λ is a Lagrange multiplier. Taking the gradient of (10)

with respect to wn and then setting the result to zero yelds:

∇wL [n] = 2Q−1
n w̃n − λxn = 0, (11)

which can be written as

wn = wn−1 +
1

2
λQnxn. (12)

In order to solve the Lagrange multiplier λ both sides of (12)

can be left-multiplied by xT
n:

xT
nwn − xT

nwn−1 =
1

2
λxT

nQnxn. (13)

The left side of (13) can be rewritten by taking into account

that xT
nwn = d [n], due to the constraint in (8), and d [n] −

xT
nwn−1 = e [n]. Hence:

λ =
2e [n]

xT
nQnxn

. (14)

Replacing (14) in (12), we obtain:

wn = wn−1 +Λ
Qnxn

xT
nQnxn + δ

e [n] , (15)

which represents the equation of the updating rule for the joint

coefficient vector of the full PSFLAF. In (15), two parameters

have been added to ensure a correct adaptation [28], [29]: the

regularization factor δ and a diagonal matrix of the step-size

parameters Λ = diag
{

µ0 . . . µM+Me−1

}
. In particular,

we choose the elements of Λ as µk = µL, for k = 0, . . . ,M−
1, and µk = µFL, for k = M, . . . ,M + Me − 1, in order to

preserve the flexibility of the split scheme to choose different

parameter settings for the coefficients of the filters on the linear

and nonlinear branches [1].

B. Derivation of the proportionate matrix

The proportionate matrix Qn in (15) aims at weighting the

coefficients of wn in a proportional fashion with respect to the

contribution they give to the linear and nonlinear modeling. We

choose the weighting matrix Qn as a diagonal matrix that can

be expressed as:

Qn ∈ R
M+Me = diag

{
q0 [n] . . . qM+Me−1 [n]

}
. (16)

The diagonal elements of Qn are derived by using the filter

coefficients computed at the time instant n− 1. In particular,

the larger the magnitude of a coefficient of wn−1, the higher

the corresponding weighting. As a consequence, the most

significant coefficients benefits from a faster adaptation. This

asymmetric weighting will make the filter converge faster

in situations where the optimal solution is sparse (or quasi-

sparse), in contrast with the original SFLAF, which has a

uniform weighting for all the functional links.

The elements of the proportionate matrix (16) are de-

rived from the improved proportionate normalized least mean

square (IPNLMS) algorithm [30] with application to the

proposed SFLAF model, thus yielding:

qk [n] =






1−αL

2M + (1 + αL)
|wk[n−1]|

ξ+2‖wn−1‖1

,

k = 0, . . . ,M − 1

1−αFL

2Me
+ (1 + αFL)

|wk[n−1]|
ξ+2‖wn−1‖1

,

k = M, . . . ,M +Me − 1

(17)

where the scalar ξ is a small positive value avoiding divisions

by zero. In (17), the proportionality factors −1 ≤ αL, αFL ≤ 1
have the task of balancing the proportionality. In fact, when

they assume a value close to 1 a high degree of sparseness

is expected both for the functional link expansion and for

the linear branch, while, on the contrary, a low degree is

expected when the proportionality factors are close to −1, thus

reducing in the limit the adaptation to a normalized least mean

square (NLMS) algorithm. It is worth noting that even for the

proportionality factors it is possible to choose two different

values, αL and αFL, respectively for the linear and the nonlinear

branches to preserve the flexibility of the SFLAF architecture.

IV. EXPERIMENTAL RESULTS

The proposed full PSFLAF is assessed in a simulated

NAEC scenario [1]. In particular, as represented in Fig. 3,

the unknwon system to identify is a cascade of a nonlinear

block, which introduces a loudspeaker distortion, followed by

a linear one that is the echo path between the loudspeaker and

the microphone. The sparse AIR is achieved by simulation

considering reverberation time of T60 = 150 ms, sampling

frequency of 8 kHz and length M = 1200 samples, and it

is depicted in Fig. 2. In order to reproduce an asymmetric

loudspeaker distortion, the input signal x [n] is processed by

a memoryless sigmoidal nonlinearity [1]:

y [n] = γ

(
1

1 + e(−ρr[n])
− 1

2

)
(18)
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Fig. 3. Scheme of the NAEC system to be identified.

with:

r [n] =
3

2
x [n]− 3

10
x2 [n] . (19)

In (18), the parameter γ represents the sigmoid gain and its

value is set to γ = 2. The sigmoid slope is represented by ρ:

ρ =

{
4, r [n] > 0
1
2 , r [n] ≤ 0

. (20)

The signal y [n] obtained by (18) is then convolved by the AIR.

Additive Gaussian noise v [n] is present at the microphone

location providing 30 dB of signal-to-noise ratio (SNR).

Therefore, the desired signal is obtained as d [n] = y [n]+v [n].
Two kinds of signals are used as input x [n]: colored noise and

female speech input. The colored noise signal is generated

by means of a first-order autoregressive model, with transfer

function
√
1− θ2/

(
1− θz−1

)
, where θ = 0.8. The length of

both the experiments is 10 seconds. An abrupt change in the

AIR is also introduced at half of the experiment length, by a

right shift of the AIR of 20 samples. In the same instant, an

abrupt change of the nonlinearity is also introduced by setting

ρ = 5/2 for r [n] ≤ 0 in eq. (20).

Performance results are evaluated according to the echo

return loss enhancement (ERLE), which is defined in dB as:

ERLE [n] = 10 log10

(
E
{
d2 [n]

}

E {e2 [n]}

)
, (21)

in which E {·} denotes the mathematical expectation. We com-

pare the performance of the proposed full PSFLAF with those

of the NLMS, the IPNLMS, the SFLAF [1], and the PSFLAF

presented in [23], which uses a proportionate algorithm only

for the adaptive filter on the nonlinear branch. It is worth

noting that performance of SFLAF and PSFLAF have been

extensively compared with other state-of-the-art methods in

[1], [16], [23]. We use the following parameter setting, seeking

the best performance of each algorithm: input buffer length

Mi = M/4, step sizes µL = 0.1 and µFL = 0.1, for all the

filters except the full PSFLAF for which we use µL = 1,

µFL = 0.8. We also choose regularization parameter δ = 10−2,

proportionality factors αL = αFL = 0, and expansion order
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Fig. 4. ERLE evolution in case of colored noise input.
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Fig. 5. ERLE evolution in case of female speech input.

P = 10. All the FLAFs involved are memoryless. For the

case of female speech input, we only change µL = 0.01 and

µFL = 0.5 for all the filters except the full PSFLAF, whose

step-size values remain unchanged.

ERLE results for the case of colored input are depicted

in Fig. 4, where it can be seen the convergence performance

improvement of the full PSFLAF with respect to the other

algorithms. It also shows superior tracking performance when

changes occur in linear and nonlinear branches. Performance

results for the case of speech signal are shown in Fig. 5, where

a significant improvement is evident with gains of around 5

dB, especially in proximity of the signal peaks, when the

distortions are more easily perceived.

V. CONCLUSIONS

In this paper, a novel NAEC system based on functional

links has been introduced. The proposed algorithm shows

the structure of a split FLAF, involving a linear adaptive

filter that aims at the estimation of the AIR, and an LIP

nonlinear filter devoted at the modeling of the nonlinearities

rebounding in the acoustic path. A joint proportionate learn-

ing algorithm has been developed for this structure, giving
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robustness to the modeling of both the AIR and nonlinearities.

Experimental results have shown the effectiveness of the full

PSFLAF algorithm in providing improved performance in the

presence of both colored noise and speech input signals for

NAEC problems. Future research will focus on extending the

proposed framework to include other proportionate learning

algorithms, other LIP nonlinear filters besides the FLAF, and

adaptive schemes to manage the value of the proportionate

factors in an online manner.
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