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Abstract—This work investigates the distributed quickest de-
tection problem, where a set of sensors receive independent
observations and send messages to a fusion center, which makes
a final decision. We are interested in detecting an event as soon
as possible even though the set of affected sensors is unknown.
We consider a scenario where the sensors are randomly spaced
along a path, and then the affected sensors are assumed to be
consecutive. Based on the assumption that the affected sensors
are consecutive, we propose a solution based on the detection
of a transient change in the spatial domain (i.e. from different
sensors). This is done by applying a double CUSUM to detect
both the appearance and disappearance of the change in the space
samples. Numerical results are presented showing the superior
performance of our proposed solution, for different scenarios,
with respect to other methods in the literature.

I. INTRODUCTION

The problem of detecting a change in distribution of a
stochastic process appears in a wide range of fields such
as quality process control [1], signal detection in wireless
communications [2], and spectrum sensing for cognitive radio
[3], just to mention a few. Generally, these problems deal
with the case where all information about the change is
available at a single sensor, only. Specifically, this problem
is known as sequential change detection or quickest detection.
It has been solved under different criteria since the pioneering
work by Page [4], which proposes the use of the so-called
CUSUM algorithm to detect a sudden change in distribution as
soon as possible. Nevertheless, there are situations where the
information available for the decision process is decentralized
(i.e. available at different sensors distributed in space).

Conventional decentralized or distributed detection ap-
proaches often consider that the change affects either a single
sensor at a given time [5], or all existing sensors at the same
time [6], [7]. There are other approaches, though, that consider
that the sensors are gradually affected after some propagation
time. In this latter case it is often assumed that sensors are
placed across a sensor array, and therefore the change will
always appear first at some predetermined sensor [8] or at any
possible sensor [9]. Nevertheless, these contributions assume
that all sensors will ultimately be affected after some large
enough time, and they adopt a Bayesian approach with a-priori
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Fig. 1. Considered scheme for decentralized change detection

knowledge on the time at which the change may appear, as
well as for the propagation time. In this paper, we consider
a non-Bayesian approach (i.e. no prior knowledge) and we
address a more general case with just an unknown subset of
sensors may experience the change. This scenario was first
considered in [10] and [11], and it is often the case in practice
when sensors are randomly distributed over a geographical
path, and just a few of these sensors become exposed to the
event.

Specifically, the scenario considered herein is shown in
Fig. 1, which considers a system with L sensors. At time n,
an observation x; ,, is made at sensor ¢ and the message U ,
created from the available information, is sent to a central
location called the fusion center. Then, based on the sensor
messages, a decision about the change (event) is made at the
fusion center. When the change to be detected happens, we
assume that only M < L consecutive sensors are affected,
usually those closest to the event (i.e. ¢1, . . ., i57). We will take
advantage here of the fact that affected sensors are consecutive,
so that the problem can be formulated as a transient change
detection problem in the spatial domain. Furthermore, apart
from detecting the change, we will be also able to identify
the unknown set of affected sensors. This scenario appears
in many real-world applications in which the sensors are
randomly spaced along a path, as when deployed from an
aircraft, so that the affected sensors by the change can fairly
be assumed to be consecutive.

The above considered scenario is of interest for applications
such as environmental monitoring [12], where for instance
a fire will affect the closest sensors to the fire, interference
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monitoring [13], where the affected sensors will be those close
to the interference source or not obstructed by any obstacle, or
intrusion detection in security monitoring systems [14]. Based
on this observation our contribution is threefold. Firstly, we
propose a CUSUM-based solution to the distributed quickest
detection problem with unknown number of affected sensors.
To do so we transform the problem to that of detecting a
change within the spatial domain (i.e. from different sensors).
This is in contrast to traditional solutions, which combine
spatial samples to detect a change in the temporal domain.
Secondly, based on the assumption that the affected sensors
are consecutive, we formulate the spatial change detection
problem as a transient change detection problem within the
spatial samples. Thirdly, with the previous formulation, beyond
detecting the temporal change we are able to localize those
sensors affected by the change without any additional cost.

It is worth pointing out that the proposed solution is
developed by assuming consecutive affected sensors, but as
we will show with numerical results, it is also a good option
when the sensors are not consecutive. The rest of this paper
is organized as follows. Section II presents the signal model
and introduces some preliminaries for the distributed quickest
detection problem. Section III presents our proposed solution.
Finally, Section IV shows numerical performance results,
while Section V concludes the paper.

II. SIGNAL MODEL AND PRELIMINARIES

Suppose we have L randomly spaced sensors along a path
communicating with a fusion center (see Fig. 1), and each local
sensor is taking measurements over time, namely {z;,}5>;
for:s =1,..., L. Initially, the measurements are under nominal
conditions (#y) and x; ,, is distributed according to the density
fio at the i-th sensor. At some unknown time v, an event
(change) occurs driving the measurement of an unknown
subset of M sensors to different conditions (71), so that if
the ¢-th sensor is affected, the density function of its local
observation z;, changes from f;o to f;; at time v. It is
important to note that this notation allows each sensor to have
different distributions. The subset of M affected sensors will
be denoted by Zp; = {i1,...,ip} € Z, with Z the set of
all possible subsets of affected sensors, with a total of |Z|
elements. Both M and 7, are assumed to be unknown. The
problem is to detect the presence of a change affecting M of
the L available sensors by taking advantage of the diversity
given by the information provided by the L > 1 sensors, in
contrast to the traditional problem where we only have one
sensor (i.e. L = 1).

In change detection problems, the time at which the change
is detected is determined by means of a stopping time 7', which
is given by some detection rule based on the measurements
{Zin}tn>1, for i =1,..., L. We assume these measurements
to be independent across time and space. In particular, we
want to find a stopping time 7', which will determine a change
as quickly as an event occurs, with some restriction in false
alarms. Let us denote by EgIM) the expectation when a change
appears at time v and sensors ¢ € Zj;, and denote by E., the
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same when there are no changes. Then, the previous criterion
can be formulated as the minimization of [15]
D(T) = supessup EM) (T — v+ DT X 1|, (1)
v>1

subject to the global false alarm constraint
N(T) = Ex(T) >, 2

where X, 1 = [®1[1y—1]---TL,[1,0—1]] denotes past global
information (i.e. at the fusion center) at time v, with
Ti10-1] = [xi,1,~-‘,$i,v71]—r the past information at the
i-th sensor; and v > 0 is a desired finite constant for the
global false alarm rate. Moreover, ()T = max(0,z) and
essup denotes the essential supremum.

The problem of monitoring a single sensor (i.e. L = 1)
has been widely addressed in the quickest detection literature
[16], [17]. For this problem, the optimal procedure for the
non-Bayesian framework is the CUSUM algorithm, which can
recursively be computed at the ¢-th sensor, at time n, as

Gim = (gin—1+LLR:,)T, 3)

with gio = 0 and LLRiyn = ln(fu(xivn)/fw(sci’n)) the
log-likelihood ratio (LLR) of the observation z; ,,. The global
problem (i.e. L > 1), though, in addition includes the nuisance
parameter Z; € Z, and then a generalized LLR should be used
instead, leading to the following stopping time [10]:

Tir = inf {n >1: max gffM) > h} , “)
Im€eT
with A > 0 the detection threshold chosen to satisfy the
false alarm constraint in (2) and gy(,IM) the CUSUM algorithm
applied to the subset of sensors ¢ € 7y, defined as
M +
g = a2+ DOTIR | 5)
j=1
Based on this recursive form, 71,g can be implemented as
simultaneously evaluating a total of |Z| CUSUMs with each
CUSUM considering a specific subset of affected sensors 7.
The implementation in (4) is very suitable when some prior
information about the number of affected sensors is available.
This is the case, for instance, when we know that only one
sensor is affected when the event appears (i.e. M = 1). In this
case, from (4), we have the so-called Max-CUSUM

Ty = inf {n >1: max gin > h} . (6)

1<i<L

That is, we raise an alarm at the global level as soon as
the maximum of the local CUSUMs is above the detection
threshold h [5]. Unfortunately, when the number M of affected
sensors is completely unknown, the implementation in (4)
is infeasible, as it requires to evaluate too many subsets.
Alternative efficient approaches were presented in [11]. One
of these is the henceforth referred to as Hard-CUSUM, which
proposes to raise a global alarm at time

L
Thq = inf {n >1: Zgi,nﬂ{gi,nzb} > h} ; (7

i=1
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Sensor index (i)

Fig. 2. Space-Time plane with L = 100 sensors and a Gaussian mean change
at time v = 10 of M = 20 appearing at sensors i € {40,41,...,59}.

with b > 0 the local threshold and Tiay the indicator function
of the event A, which is 1 if the event is true and O otherwise.
In other words, the fusion center raises an alarm as soon as
the sum of those local CUSUMs above the local threshold
b is too large. Results in [11] show an improvement of the
detection delay for a fixed false alarm rate for specific values
of thresholds (i.e. b and h) of the Hard-CUSUM with respect
to other approaches available in the literature.

III. SPACE-TIME DOUBLE-CUSUM (STD-CUSUM)

Our proposed scheme for distributed quickest detection is
based on the observation that physical phenomena typically
affect a group of neighboring sensors, where the M < L
affected sensors can fairly be assumed to be consecutive.
This can equivalently be understood as a transient change
detection problem in the spatial domain. That is, for a given
time instant, the spatial samples coming from each sensor can
be processed sequentially as a conventional sequential detector
does in the time domain. Under H all spatial measurements
follow certain distribution f; o, whereas after the change, M of
these measurements in the space domain experience a change
in their distribution (i.e. from f; o to f; 1). This behavior is
depicted in Fig. 2, where the so-called active space-time plane
is highlighted. The illustration assumes a change in the mean
of a Gaussian distribution at time v = 10 of M = 20 sensors
(ie. 7€ {40,41,...,59}) out of a total of L = 100 sensors.

If we take a look at one of the spatial realizations under
H1 in Fig. 2 (i.e. for time instants n > 10) we see how the
mean of some sensors measurements abruptly changes. Thus,
for a given time instant, the problem can be thought as that
of change detection using spatial samples. With this behavior
in mind, we can think on applying the CUSUM algorithm on
the spatial domain, and then use only the information of those
sensors declared to be affected for making a global decision.
Indeed, this is similar to the behavior of the Hard-CUSUM
presented in (7), which only uses the information of those
sensors whose local CUSUM has detected a change.
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Nevertheless, the local CUSUMs used for the Hard-
CUSUM are not exploiting the space dimension, in the sense
that they only consider the corresponding local sensor, thus
disregarding spatial samples from neighboring sensors. As a
result, it may take some time until all the local CUSUMs
of the affected sensors are above the local threshold, thus
incurring in a penalty in terms of detection delay. This is so
because some measurements may seem not to be affected, even
if they actually are. Our proposed approach is based on the
idea of exploiting the space dimension in such a way that we
have some statistic that increases along the space dimension
as long as the sensor measurement seems to be affected and
it is restarted just when the change in the space dimension
disappears. Thus, the statistic will be above the local threshold
even if some sensor measurements seem not to be affected.

A. STD-CUSUM detection rule

Assuming that the M < L affected sensors are consecutive
and unknown, we can model the problem of detecting the
change in the space dimension as a transient change detection
problem, with transient length equal to M samples. In fact,
L is fixed, so this detection problem can be seen as an off-
line problem. In other words, at each time we have L samples
and we want to decide if there is some change within these
samples. This problem is analyzed in [18], but it leads to a
complex solution due to the large number of trials we need to
evaluate, similarly to what happened in (4). Our contribution
is intended to circumvent this limitation by using a simple and
computationally efficient space-time CUSUM detector.

Actually, in order to have the desired behavior (i.e. detecting
the transient change in the space dimension) we need to use
two different CUSUMSs, one for detecting the change from H,
to H; and another for detecting the change from #; to Hg. Let
9i,n denote the local CUSUM for detecting the former change,
defined as in (3), and let g, ,, denote the local CUSUM of the
i-th sensor, but for detecting the disappearance of the change,
defined as

Gin = (Gin—1 — LLR; )" . (8)

Furthermore, let us define the CUSUM for detecting the
appearance and disappearance of the change in the space
dimension for a given time instant n, respectively, as

Gin = (Gi-1n+ gin1+LLR; )" Leg, . i<b)

~ s ) + )
Gin = (Gi—l,n + Gin—1— LLRz’,n) LiG, >0}

with Gig = 0 and G0 = 0 for i = 1,...,L. It is
worth pointing out that this recursive form includes both
time (with g; ,—1) and space (with G;_, ;) integration, and
it is here where our contribution exploit both time and space
dimensions. With this framework, we define the Space-Time
Double-CUSUM (STD-CUSUM) as

(STD)

9 (10)

= Givnl{éi,n<b}'
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TABLE I
DETECTION DELAYS WITH L = 100 AND L = 20 FOR DIFFERENT VALUES OF M CONSECUTIVE AFFECTED SENSORS
L =100 L =20
o7 Detection Scheme # sensors affected M Detection Scheme # sensors affected M
80 20 10 5 1 16 7 2 1
Tha(h =106.4,b = 0.5) 7.3 20.2 | 33.8 | 56.1 | 195.5 | Thq(h =32.9,b=0.5) 12.1 24.4 69.9 122.8
Tha(h =62.3,0=2.3) 9.2 19.7 | 319 | 537 | 191.6 | Tha(h =25,b = 2.3) 13.7 24.1 70.1 126.8
Tha(h =29.7,0 = 4.6) 142 1 219 | 299 | 433 | 152.6 | Ty,q(h = 16.5,0 = 4.6) 19.3 27.1 59.8 112.4
10* [ Tsc(h = 76,0 = 0.25) 5.5 172 1 29.8 | 50.5 | 1644 | Tsc(h =24.2,b = 0.25) 10.4 20.9 57.5 98.3
Tsc(h =63.5,b = 2.6) 4.9 145 | 247 | 434 | 170.1 | Tsc(h =22.1,0 = 2.6) 8.9 18.3 55.5 102.9
Toc(h = 47,6 =15) 38 | 11.7 | 20.1 | 34.6 | 1428 | Tso(h = 18,0 =5) 79 162 | 504 | 96.0
Tmx(h =11.12) 327 | 399 | 452 | 523 85.5 Trax (h = 9.75) 34.16 | 41.36 | 57.89 | 74.42

B. Identification of Affected Sensors

The introduction of the STD-CUSUM leads to the desired
behavior, i.e., we have a CUSUM-based statistic that is able
to detect the appearance and disappearance of the change in
the space dimension. Doing so we are exploiting the space
dimension in such a way that, at time n, the STD-CUSUM
increases along the space dimension as long as the sensor
measurements seems to be affected by the change, so that it
may still be above the local threshold even if some of the
measurements seem not to be affected. With this formulation,
we are able to localize those sensors affected by the change,
even if they are not consecutive, at time n, as

Tu(n) = {in,.inef = {95 2 0}
C. Global STD-CUSUM Stopping Time

Let us now focus on the global detection carried out in the
fusion center. The idea is, at time n, to apply the STD-CUSUM
for detecting those sensors that are affected by the change, so
that we can use the expression in (4) but substituting Z,; by
their estimates at time n given by (11). Doing so, we get rid off
the maximization over Zp; € Z in (4), drastically improving
the computational burden. To do so, we suppose that, at time
n, each sensor ¢ sends its LLR (i.e. U; , = LLR; 5), and then
the fusion center calculates the STD-CUSUM in (10) so that
it can raise a global alarm at time

(1)

L
T.. = inf {n >1: Zgi,n]l{ggsfmﬂ} > h} . (12
i=1 ‘
Both thresholds b and & should be numerically fixed according
to the desired mean time between false alarms.

IV. NUMERICAL RESULTS

This section is intended to provide numerical simulations
to illustrate the performance of our proposed scheme and
compare it to other schemes in the literature. We consider
two scenarios, one using L = 100 and another with L = 20
iid sensors. For the sake of clarity and illustration we suppose
iid Gaussian observations at each sensor with mean 0 and
variance 1 before the change (i.e. Hp) and with mean 0.5
and variance 1 after the change (i.e. H1). In practice, these
observations can be any detection metric related with the event
of interest, like temperature, power, integrity metric, ... The
results presented next under case #1 consider the affected
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sensors to be consecutive and case #2 considers the case when
all the affected sensors are not consecutive.

In particular, the presented results compare the performance
of the STD-CUSUM in terms of detection delay, with a fixed
value for the time between false alarm, with the Hard- and
Max-CUSUM. For our proposed detector (STD-CUSUM) we
use different values of the local threshold b and we find a value
h, from numerical simulations, such that N(T) ~ v = 10%.
The selected local thresholds are chosen so that we can make
a wide comparison with those selected in [11] for the Hard-
CUSUM. Next, using the obtained threshold h, we obtain
the detection delays of the analyzed algorithms with different
number of affected sensors M. This is done for both scenarios
with L = 100 and L = 20. For the other schemes we use the
same values for the thresholds as in [11], and then the obtained
results are the same.

A. CASE I: Consecutive affected sensors

In this section, we consider the case when the affected
sensors are consecutive, as it would be the case in a sensor
array. In Table I we can see how for L = 100 the STD-
CUSUM is in general better than the other analyzed schemes.
In particular, for M > 5 the STD-CUSUM is better than the
Hard-CUSUM for any of the used thresholds. For lower M
only with the configuration using the larger local threshold
(b =5) in the STD-CUSUM is better than the Hard-CUSUM
(for any of its configurations), giving a gain of 10 samples
in terms of detection delay. Regarding the Max-CUSUM, the
STD-CUSUM outperforms it for any value of M, except
for M = 1. It is interesting to see that, in contrast to the
Hard-CUSUM, the larger the local threshold b the better
performance of our proposed scheme in terms of detection
delay for a fixed false alarm rate for all the simulated values of
M. So, for the STD-CUSUM it is of interest to fix a large local
threshold b independently of the number of affected sensors
M. This is a very good advantage since M is unknown and
then with our proposed scheme we make sure it will work
well for any value of M.

Similar results are obtained for L = 20 in Table I. We
see how the STD-CUSUM is better than the Hard-CUSUM
for any of the used configurations for all M, confirming
the outperformance of our proposed solution for different
configurations of the local threshold b even for low values
of L. Finally, it is worth pointing out that the larger M the
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TABLE II
DETECTION DELAYS FOR NON CONSECUTIVE AFFECTED SENSORS

L =20
# sensors affected M
16 7 4 2

¥ Detection Scheme

Tec(h=24.2,b=0.25) | 103 | 205 | 323 | 576

Tec(h = 22.1,0 = 2.6) 94 | 188 | 30.3 | 56.2

Too(h = 18,6 =15) 87 | 187 | 287 | 514
L =100

# sensors affected M
80 20 10 5

104 | Detection Scheme

Toc(h = 76,0 = 0.25) 56 | 165 | 279 | 476
Tic(h = 63.5,b = 2.6) 52 | 151 | 253 | 441
Too(h = 47,0 = 5) 41 | 140 | 228 | 374

larger is the improvement of the STD-CUSUM with respect to
the Hard-CUSUM, which is intuitive since the STD-CUSUM
increases as the transient change in the space dimension is
larger. So, we can conclude that the STD-CUSUM is good
for large L and M, but it still is a good option otherwise.

B. CASE 2: Non consecutive affected sensors

Now, we show, in Table II, the obtained results when the M
affected sensors are not consecutive, as it would be the case in
a randomly deployed sensor network. We only show the results
for the STD-CUSUM, since the results for the Hard- and Max-
CUSUM are the same as in the Table I. Firstly, we see how
the detection delay in this case, for the same configuration
of thresholds, is slightly degraded compared to the case of
consecutive affected sensors (see Table I). This is in line with
the fact that the STD-CUSUM works better when the number
of consecutive affected sensor is greater.

Secondly, we see that the loss of performance of the STD-
CUSUM with respect the case when all the M sensors are
consecutive is greater for lower values of M. This can be seen
for instance for L = 100 when M = 80 the detection delay is
similar for both cases (i.e. M consecutive or not consecutive
sensors), whereas when M = 5 we have a difference of 3
samples. This is due to the fact that for large M there will
likely be some subset of affected sensors that are consecutive,
and then the loss of performance is negligible, whereas for
small M it may happen that no consecutive sensors are
affected, thus incurring in some degradation. Nevertheless,
comparing with the results in Table I for the Hard-CUSUM we
see that the STD-CUSUM still gives lower detection delay, so
we can conclude that the STD-CUSUM outperforms the Hard-
CUSUM even when the affected sensors are not consecutive.

V. CONCLUSIONS

This work has studied the problem of distributed quickest
detection when the change to be detected is only visible for
some unknown number of sensors. This was motivated by the
fact that many physical phenomena typically affect just a group
of neighboring sensors, we have considered a scenario where
the affected sensors are consecutive. Based on this assumption
we have proposed a solution working with a spatial change
detection problem. In contrast to previous solutions, which
only exploit the temporal dimension or make use of a-priori
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information, our proposed solution fully takes advantage of
the spatial dimension by formulating the problem as that of
spatial change detection. Furthermore, no a-priori information
is considered regarding neither the change point or the number
of affected sensors. With the proposed solution, beyond detect-
ing the change, we are able to localize the affected sensors.
Numerical results have shown that using the information of
the localized affected sensors at the fusion center improves the
global detection delay with respect to previous contributions
assuming an unknown number of sensors, too. This has been
shown to be true even when the affected sensors are not
consecutive, which makes the proposed technique applicable
regardless of the sensor deployment.
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