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Abstract—Hearable is a recently emerging term that describes
a wireless earpiece that enhances the user’s listening experience in
various acoustic environment. Another important feature of hear-
able devices is their capability to improve speech communication
in difficult social settings, which usually consist of a mixture
of different non-stationary noise. In this paper, we present
techniques to suppress a combination of non-stationary noise and
transient noise. This is achieved by employing a combined noise
suppression filter based on prediction and masking to achieve
impulsive noise suppression. Experimental results highlight the
robustness of the proposed algorithm in suppressing the tran-
sient noise while maintaining the speech components, without
requiring any prior information of the noise.

I. INTRODUCTION

For wearable ear-mounted listening devices, recently termed
hearables, speech enhancement is one of the essential modules
required to improve the quality of the speech signals from
the external acoustic environment that are often contaminated
by different types of noise and interference. With the space
and power constraints in the earbuds, single microphone
noise reduction systems remain the preferred framework over
the multi-channel structures, with only the spectral-temporal
structure of the signals being exploited. Even when multi
microphones setups are used, a well-formed single-channel
method can serve as a post filter to further suppress unwanted
noise and to improve the speech signal-to-noise ratio (SNR)
[1]–[4].

Numerous single-channel speech enhancement algorithms
have been developed over the decades aiming at estimating
the power spectrum of the background noise and obtaining the
desired clean speech signal estimate [2], [5]–[8]. In particular,
these approaches work well when the power spectral density
(PSD) of the noise signal during the observation time interval
is more stationary than the speech. A common practice for
estimating the noise PSD is to recursively average the noisy
observation in short-time intervals by using an estimation of
speech presence probability (SPP) [9]–[12]. The computation
of SPP is however mainly based on the estimation of SNR,
which is often inadequate to distinguish speech from noise
in environment with highly non-stationary and transient noise
such as restaurant, office or worksite. In these environments

some noise components may vary even faster than the speech
signal.

Due to the sparse characteristics of the transient noise in the
time signal, several time domain algorithms have been devel-
oped to identify and remove transient noise, which include
threshold-based approaches [13], [14] and statistical-based
approaches [15], [16]. These time domain methods produce
sample by sample based transient noise detection and apply
identical suppression weight to all frequencies. In order to
provide better detection, time-frequency domain methods have
been proposed to exploit the spectral-temporal characteristics
of speech and transient noise [17], [18]. However, these
algorithms do not provide information about the position of
the transient within the observation interval. This can be
improved by reducing the frame size, which increases the time
resolution, but lowers the frequency resolution. Alternatively,
wavelet-based [19] and phase-based detections [20] have also
been studied to exploit more properties of the transient noise.
Another group of research focused on developing supervised
transient noise reduction methods, where speech enhancement
is done by utilising the noise learnt from training datasets [21],
[22]. This type of processing requires prior information such
as the repetition frequencies of the transient noise to achieve
the desired performance.

In this paper, we present an algorithm that suppresses
transient interferences for speech enhancement particularly for
social settings. The algorithm mainly consists of three stages:
(1) a linear prediction procedure to enhance the difference
between transient noise and other signal components, (2) a
speech masking threshold based on the predicted signal, and
(3) a noise PSD estimation function that differentiates the
transient noise from the more-stationary background noise.
The transient noise suppression gain function is then applied to
a speech enhancement framework as shown in Fig. 1, based
on the structure in [8]. Experimental results show that the
proposed algorithm is capable of tracking and suppressing
the transient noise, which enables a similar speech quality
and maintains the essence of the speech intelligibility when
compared to the approach without the transient noise suppres-
sion. The paper also demonstrates that the proposed algorithm
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does not require any prior knowledge about the temporal or
spectral structure of the transient noise, and is suitable for
on-line hearable applications.

The remainder of this paper is organized as follows. In
section II, the signal model of a single channel speech en-
hancement framework is formulated. Section III demonstrates
the proposed algorithm. Section IV presents the graphical and
objective experimental results and Section V concludes the
paper.

II. SIGNAL MODEL

Let the observed noisy signal be expressed in discrete-time
domain as

y(n) = x(n) + v(n) (1)

where x(n) is the clean speech signal and v(n) = t(n)+ν(n)
contains the additive highly non-stationary transient noise
t(n) and the background noise ν(n) with relatively less
time-varying statistics. By using the short-time Fourier trans-
form (STFT), the spectral coefficients of the observed signal
Y (k,m) can be obtained by

Y (k,m) =

N∑
n=1

y (mR+ n)wa (n) exp

(
−j2πkn
N

)
(2)

where k = [1, ...,K] is the frequency bin index, m =
[1, ...,M ] is the frame index, R is the STFT frame rate and
wa(n) is an analysis window function. The observed signal in
Eq. (2) can be written as

Y (k,m) = X(k,m) + T (k,m) + V(k,m) (3)

where X(k,m), T (k,m) and V(k,m) represent the STFTs of
x(n), t(n) and ν(n), respectively. Assume that all components
in Eq. (3) are uncorrelated with each other, the power spectral
density (PSD) of the observed signal can be defined as

λy(k,m) = λx(k,m) + λt(k,m) + λν(k,m) (4)

where
λx(k,m) = E

{
|X(k,m)|2

}
,

λt(k,m) = E
{
|T (k,m)|2

}
,

λν(k,m) = E
{
|V(k,m)|2

} (5)

denote the periodograms of the clean speech, the transient
noise and the background noise, respectively.

III. PROPOSED ALGORITHM

A. Transient noise estimation

The first stage of the proposed algorithm is to distinguish
the difference between the transient noise and speech from the
observed signal. Consider an auto-regressive (AR) model for
the speech signal x(n) as defined by

x(n) =
L∑
l=1

αlx(n− l) + w(n) (6)

where {αl}l=1,...,L are L AR parameters and w(n) is a zero-
mean white noise excitation signal with σ2

w variance. The value
of the parameter L has to be large enough to represent both
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Fig. 1. Block diagram of transient and background noise suppression
framework.

voiced and unvoiced phonemes [21]. As the speech signal
can be viewed as a periodic and rather stationary signal in
a short time interval, linear prediction can be used to predict
the speech from the observed signal y(n). Let yp(n) be the
whitened signal obtained from

yp(n) = y(n)−
L∑
l=1

αly(n− l), (7)

which produces the background noise t(n), excitation signal
w(n) and the residual speech. In order to reduce the amount
of speech in the linear prediction, a lattice filter is used to
improve the estimation accuracy of the vocal tract filter. The
structure of a lattice filter consists of a forward prediction error
fi(n) and a backward prediction error bi(n), which are given,
respectively, by

fi(n) = fi−1(n) + κi(n)bi−1(n− 1)
bi(n) = bi−1(n− 1) + κi(n)fi−1(n).

(8)

The reflection coefficient in the lattice filter κi(n) is updated
by using Burg’s algorithm as defined by

κi(n) =
ni(n)

di(n)
(9)

where

di(n)=λpdi(n− 1) + (1− λp)
[
f2i−1(n) + b2i−1(n− 1)

]
ni(n)=λpni(n− 1)+(1− λp) (−2) [fi−1(n)bi−1(n− 1)] .

(10)
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In this work, the I-th tap forward prediction residual fI(n) is
used as the whitened signal yp(n).

The next step is to to further exploit the character difference
between the transient noise and the residual by utilising the
spectral-temporal features of the transient. The transient noise
PSD estimate can be computed by employing a spectral gain
function to the STFT of yp(n), as given by

λ̂t(k,m) = Gss(k,m)Yp(k,m) (11)

where

Gss(k,m) = 1− βss
λ̄w(k,m)

λ̄yp(k,m)
(12)

is the spectral subtraction function with over-subtraction fac-
tor βss, with λ̄w(k,m) and λ̄yp(k,m) denote the smoothed
periodograms of the residual noise and predicted signal, re-
spectively. The smoothed periodogram of the whitened signal
can be obtained by a first-order recursive averaging of the
spectral amplitude as follows

λ̄yp(k,m) = αypλ̄yp (k,m− 1) + (1− αyp) |Yp (k,m) |2
(13)

where αyp = exp ((−2.2R) / (typfs)) denotes the smoothing
factor, with fs denotes the sampling frequency. By assigning a
smaller value to αyp leads to better capability to capture faster
PSD variations of the observation.

The periodogram of the residual noise is obtained by

λ̄w (k,m) = p (k,m) λ̄w (k,m− 1)

+ (1− p (k,m)) |Yp (k,m) |2
(14)

where p (k,m) denotes the transient presence probability
(TPP). The TPP is estimated by using a soft decision based
estimator with conditional averaging smilar to [11], as given
by

p(k,m) =


P1, if ps(k,m) ≤ 0.3

P2, if 0.3 < ps(k,m) ≤ 0.6

P3, if 0.6 < ps(k,m) ≤ 0.8

P4, if ps(k,m) > 0.8

(15)

where Pi = exp ((−2.2R) / (tifs)) indicates the exponential
smoothing constant, with i = [1, 2, 3, 4], and ps(k,m) denotes
a sigmoid function given by

ps(k,m) = {1 + exp (−σpost (γ̂t(k,m)− εpost))}−1 (16)

where γ̂t(k,m) = |Yp(k,m)|2/λ̄w(k,m) denotes the estimate
of the a posteriori SNR, while σpost and εpost denote the
slope and the mean of the sigmoid curve, respectively. Both
the slope and the mean in [11] are computed based on the
a priori speech presence uncertainty estimate and the SNR
estimate. In this paper, the noise PSD estimate λ̄w (k,m)
tracks only the more stationary noise instead of the short bursts
of transient interference. Thus, the values of σpost and εpost
are chosen such that the TPP estimate is quick enough to track
the variation of the transient noise.

B. Speech enhancement with masking

The aim of speech enhancement in this paper is to obtain the
clean speech spectrum estimate X̂(k,m) from the observed
signal Y (k,m), which is given by

X̂(k,m) = G(k,m)Y (k,m) (17)

where G(k,m) = Gt(k,m)Gν(k,m) is a multiplicative non-
linear gain function consists of a gain function Gt(k,m)
for transient noise suppression and a gain function Gν(k,m)
mapped with the a priori SNR estimate or the a posteriori
SNR estimate γ̂ν(k,m). The gain function can usually be op-
timally derived in the MMSE sense [2], [6]. As an alternative
gain function a modified sigmoid (MSIG) function [8] has
been used in this work, which is given by

Gν(k,m) =
1−exp[−a1ξ̂ν(k,m)]
1+exp[−a1ξ̂ν(k,m)]

× 1

1+exp(−a2[ξ̂ν(k,m)−c])

(18)

where a1, a2 and c are parameters to control the shape of
the sigmoid curve. The a priori SNR estimate ξ̂ν(k,m) and
the noise PSD estimate λ̂ν(k,m) are obtained from [8] and
[11], respectively. The objective of the transient noise sup-
pression is to reduce the power of the transient interferences
in the noisy speech without introducing audible speech and
noise distortions. However, the transient noise PSD estimate
λ̂t(k,m) contains the speech residual which may result in
speech distortion after suppression. With this in mind, a speech
masking threshold and a spectral gain function are proposed
to suppress the transient noise in the noisy signal by utilising
a noise-to-transient ratio (NTR). The gain function can be
written as

Gt(k,m) = min

{
λ̂ν(k,m) + δ(k,m)

λ̂ν(k,m) + βtλ̂t(k,m)
, 1

}
(19)

where βt denotes a transient noise suppression weight and
δ(k,m) denotes the speech masking threshold that masks the
residual speech components at higher frequencies in λ̂ν(k,m)
with a frequency dependent floor by utilising the variance
of the whitened signal and a first-order low pass filter. The
gain function takes a value close to 0 when λ̂t(k,m) is larger
than λ̂ν(k,m), indicating that transient noise with high volume
being suppressed.

Finally, the enhanced speech signal x̂(n) is obtained by
using an inverse STFT to transform X̂(k,m) back to the time
domain.

IV. EXPERIMENTAL RESULTS

In this section, the performance evaluation was done for
the aforementioned speech enhancement framework with and
without the proposed transient noise suppression algorithm,
defined as MSIG-PRED and MSIG, respectively. The param-
eters for the algorithms were selected based on empirical
studies as follows: for prediction, I = 25, λp = 1− (1/160);
for transient noise PSD estimation, βss = 1.3, typ = 0.01s,
t1 = 0.8, t2 = 3, t3 = 6, t4 = 12, σpost = 6, εpost = 1.5;
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Fig. 2. Spectrograms of clean speech, noisy speech, and enhanced signals,
with door closing interference at 0 dB SNR. The figure highlights the transient
noise suppression at around 4.2 second using the proposed method.

for speech enhancement, a1 = 2.4, a2 = 0.2, c = −1.7,
and βt = 1. For objective measurement, the speech sequences
were taken from NOIZEUS speech database, which contains
30 English sentences recorded from 3 male and 3 female
speakers [2]. The evaluated noise was a recorded cafeteria
noise comprising a mixture of non-stationary and transient
noise. The signals were all sampled at fs = 16 kHz. All
speech utterances were contaminated by the noise with 4
levels of SNRs, −5 dB, 0 dB, 5 dB, and 10 dB. The
results were generated with a square-root Hanning window and
K = 512 frequency bins. Performance evaluation was done
using the intrusive perceptual evaluation of speech quality
(PESQ) measure [23] and short-time objective intelligibility
(STOI) measure [24], where the former evaluates the speech
quality from a score 0 to 4.5 and the latter rates the speech
intelligibility from 0 to 1.

Figs. 2 and 3 depict the spectrograms of the noisy signals
in two real-time social scenarios. Fig. 2 illustrates a speech
sequence produced in a room with a door closing sound
occurred at time instance around 4.2 second. It can be seen
that MSIG-PRED was able to suppress the transient noise
and maintain the speech components, while MSIG treated the
sound as speech onsets. A more complicated noisy scenario
has been shown in Fig. 3, which was recorded in a cafeteria
with various non-stationary noise signals and transient noise.
The figure shows that the proposed algorithm was capable of
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Fig. 3. Spectrograms of clean speech, noisy speech, and enhanced signals in
a noisy cafeteria at 0 dB SNR. The proposed method reduced the impulsive
noises while maintaining the harmonic structure of the speech.

suppressing the banging sounds happening in the background
of a social settings while maintaining the integrity of the
speech components. This is an important features for a hear-
able device to preserve the speech and to prevent the transient
noise from being accentuated after speech enhancement.

The objective measurement evaluates the noisy scenario as
illustrated in Fig. 3 with speech sequences from NOIZEUS
database. Fig. 4 shows the results of both the PESQ scores
and the STOI scores for all the evaluated algorithms. It
can be observed that both MSIG-PRED and MSIG have
similar PESQ and STOI scores over the evaluated input SNRs.
This indicates that the proposed transient noise suppression
algorithm reduces the impact of the transient noise without
affecting the quality and intelligibility of the speech. However,
while the two processing methods improve the speech quality,
they both lower the speech intelligibility. The benefit provided
by the proposed transient noise suppression is that it does not
reduce the intelligibility further.

V. CONCLUSION

To conclude, an algorithm for transient noise suppression for
speech enhancement is proposed. An adaptive linear prediction
based on Burg’s lattice algorithm is firstly utilised to enhance
the transient noise from the speech components. Second,
the power spectral density (PSD) of the enhanced transient
noise is estimated by tracking and suppressing the residual
noise with a soft-decision based estimator. A speech masking
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Fig. 4. Objective measurement with PESQ and STOI.

threshold is then utilised to avoid the suppression of the speech
components at high frequencies. This filter is employed in a
typical speech enhancement framework to realise a complete
noise reduction scheme. Experimental results show that the
proposed algorithm is capable of suppressing different types
of transients, without affecting the speech. Based on the two
examples shown, the proposed method reduced the PSD of the
transients with low impact to the speech. This is supported by
both objective measures, PESQ and STOI, which evaluate the
speech quality and intelligibility, respectively. The algorithm
also demonstrates its capability to be implemented for real-
time applications without prior knowledge about the time
position of the transient noise.
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