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Abstract—In this paper we argue that the Wigner-Ville dis-
tribution (WVD), instead of the spectrogram, should be used
as basic input into convolutional neural network (CNN) based
classification schemes. The WVD has superior resolution and
localization as compared to other time-frequency representations.
We present a method where a large-size kernel may be learned
from the data, to enhance features important for classification.
We back up our claims with theory, as well as application on
simulated examples and show superior performance as compared
to the commonly used spectrogram.

I. INTRODUCTION

Convolutional neural networks (CNN) is rapidly growing as a
tool for classification of a wide range of signals. By optimizing
convolutional kernels in multiple layers, where the results
from the kernels in one layer is passed to the next, extremely
accurate classifiers can be generated. Instead of manually
identifying features that separate different classes, features are
instead learned from pre-classified data, as interpreted through
the convolutional kernels [1]. Although initially introduced to
be applied to image sets, the application of CNNs has spread to
also be applied to the time-frequency representations of audio,
EEG, or other one-dimensional non-stationary signals. The
addition of temporal frequency information has been shown
to generate more robust results in classification; however most
papers simply calculate the spectrogram of the audio signal
[2]–[4]. There are many other ways to estimate the time-
frequency content of a signal, such as methods based on the
evolutionary spectrum, time-scale representations or smooth-
ing kernels applied to the Wigner-Ville distribution (WVD)
[5]. The WVD is unique and unbeaten in terms of locality, for
signals containing only one single component, as well as being
information loss-less. From the WVD, all possible quadratic
time-frequency representations can be generated using a two-
dimensional smoothing kernel of the WVD. Where as the
spectrogram usually is calculated using some chosen data
window function (e.g. Hann or Hamming windows), and the
short-time Fourier transform, it could also be computed using
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a smoothing kernel of the WVD. The reluctancy of using the
WVD is often attributed to the cross-terms arising between
every pair of components in the signal, making it visually
difficult to interpret. Such cross-terms are smoothed using the
spectrogram or other general kernels. It has however been ar-
gued that these cross-terms in fact hold valuable classification
information [6], and hence should not be excluded. Especially
when the difference between the classes are small, such that
high resolution and accurate locality is needed to separate
them.
There are papers that have used WVD-based methods as input
to a classification CNN, [7], [8], it is however often done
without proper justification or discussion on the choice of
inputs, and without any comparisons to other forms of inputs.
In this submission we argue that the WVD should be used
as input to a classification CNN. We form an extra layer
where a large size convolutional kernel is learned, to allow
for any type of smoothing. Throughout the paper, ∗ will
denote convolution, i the imaginary unit, t and n denotes
continuous and discrete time, respectively, f and m continuous
and discrete frequency, and τ denotes time-lag. Continuous
functions will be denoted y(t), and the discrete observations
of the same function will be denoted y[n]. N(µ, σ) denotes
the Gaussian distribution. All integrals are assumed to range
between −∞ to ∞.

II. TIME-FREQUENCY REPRESENTATION

The WVD is defined, given the auto-correlation function
rz(t, τ) = z(t+ τ

2 )z
∗(t− τ

2 ), as

Wz(t, f) =

∫
rz(t, τ)e

−i2πfτdτ, (0)

where z is an analytic signal, i.e. all frequencies are non-
negative and z∗ denotes the complex conjugate. If the signal
is not analytic, this is achieved by the Hilbert transform,

z(t) , H[x(t)] = F−1f→t((−i · sign(f))Ft→fx(t)), (0)

where Fa→b is the Fourier transform from a to b, and F−1b→a
is the inverse Fourier transform from b to a. The WVD
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does however suffer from cross-terms, especially if there are
multiple components in the signal. Between every component
in the signal an oscillating cross-term will appear in the
spectrum. It can be shown that

Wz1+z2(t, f) =Wz1(t, f) +Wz2(t, f) + 2<{Wz1z2(t, f)}
(0)

where Wz1(t, f) and Wz2(t, f) are denoted auto-terms and
2<{Wz1z2(t, f)} is the oscillating cross-term centered be-
tween Wz1(t, f) and Wz2(t, f), [5]. The cross-terms may be
remedied by convolution with some kernel function ρ(t, τ),
giving us what is called the quadratic class

WQ
z (t, f) =

∫∫
ρ(t− s, τ)rz(s, τ)e−i2πfτds dτ (0)

It is easily shown that the spectrogram, calculated with some
window function h(t), is a member of the quadratic class (also
referred in literature as the bilinear class or Cohen’s class). The
spectrogram is defined

Sz(t, f) =

∣∣∣∣∫ h∗(t− s1)z(s1)ei2πfs1ds1
∣∣∣∣2

=

(∫
h∗(t− s1)z(s1)ei2πfs1ds1

)
×(∫

h(t− s2)z∗(s2)e−i2πfs2ds2
)

which, with use of the change of variables s1 = s + τ
2 and

s2 = s− τ
2 , gives

Sz(t, f) =

∫∫
h(t− s− τ

2
)h∗(t− s+ τ

2
)×

z(s+
τ

2
)z∗(s− τ

2
)ei2πfτds dτ

=

∫∫
ρh(t− s, τ)rz(s, τ)ei2πfτds dτ

=
(
Qh ∗ ∗Wz

)
(t, f),

where ρh(t, τ) = h(t + τ
2 )h
∗(t − τ

2 ) and the time-frequency
smoothing kernel Qh(t, f) , Fτ→fρh(t, τ), [5].
This means that the set of spectrograms is a subset of the
quadratic class, and hence a restriction on the possible time-
frequency representations of the signal. When constructing the
spectrogram there is trade-off in resolution between time and
frequency. If a long time-frame is used to estimate the temporal
frequency, good resolution in frequency is achieved but poor
resolution in time. Vice-versa is true if a short time-frame is
chosen. The WVD however has perfect temporal and spectral
resolution simultaneously [5].

III. NEURAL NETWORK KERNEL OPTIMIZATION

We propose that when CNNs are used to classify one-
dimensional signals, e.g audio, the WVD should be used as
input and the first layer in the CNN could be constructed
to optimise some large size convolution kernel. A drawback
of optimising the kernel applied to the WVD is the size of
kernel function. If the window length is used to calculate
the spectrogram is set to N = 32, then the corresponding

smoothing kernel will be at least N2 = 1024 (depending
on the choice of zero-padding), and hence introduce a huge
set of parameters to optimise, for a single kernel. The same
problem is encountered in [9] when constructing a CNN
for image noise deconvolution. The proposed solution to the
problem is calculation of the singular value decomposition
(svd) of the kernel. The spectrogram kernel Qh[n,m], is
highly structured with a dependency between the time and
frequency dimensions, where a large window function in time
generates a narrow main lobe in frequency and vice-verse.
We want to alleviate this restriction to possibly move away
from the spectrogram to some other member of the quadratic
class, opening for more information to be passed to the CNN.
Denoting the svd of any kernel as Q = USV T , and the j:th
column in U and V as uj and vj respectively and the j:th
diagonal element in S as sj , the convolution of the WVD
Wz [n,m] with any kernel Q[n,m] may be approximated using
the M first singular components,

(Q ∗ ∗Wz) [n,m] ≈
M∑
j=1

sj · uj [n] ∗
(
vj [m]T ∗Wz [n,m]

)
,

(-5)
where equality is achieved if M ≥ rank(Q).
By optimizing this window function we open the door to
multiple sub-classes in the quadratic class, including the
spectrogram, but without the performance restrictions induced
by the spectrogram, or any other member of the quadratic
class, with a set of data windows.
The proposed layer structure may be seen, in figure 1, under
kernel-tuning. Note that this section only contains pure con-
volution. No bias is added, nor is any activation function or
pooling applied. Note also that it is a one-to-one mapping
layer, i.e. one image in, one image (of same size) out,
meaning the kernel will only allow for smoothing out noise or
enhancing existing information that may be interpreted by the
convolutional feature extracting part of the neural network.
One could easily structure the first layer to create multiple
output images, where different kernel-functions are generated.
In this paper we use only one to keep the comparison with
the spectrogram fair.

IV. SIMULATED EXAMPLES

To show the advantages of using the WVD instead of the
spectrogram we created eight different classes and simulated
a total of 2000 observations to be used for training. This
training set was further split into 1800 training samples and
200 validation samples. The validation samples were used
to analyze over-fitting during training. An additional 2000
observations were simulated to be used for evaluation. For
each realization the WVD and the spectrogram is calculated,
assuring that both sets contain the same realizations of the
classes. The spectrogram is calculated using a Hann window
of length 32 [5]. The spectrogram and WVD are separately
normalized to be zero-mean and unit-variance, to increase
efficiency [12].
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Figure 1: The proposed neural network structure, divided into three parts. The first part consists of a smoothing, where the
vectorized components of the smoothing kernel is optimised. The second part consists of two standard setup convolutional
layers, both including a ReLu-layer [10] and a 2x2 max-pooling, [11], The third part consists of three fully connected layers,
and finally a softmax operator is applied to the last layer to perform classification.

Layer # of maps & neurons kernel
input 1 map of 128x64

kernel1 1→ 8 maps of 128x64 32x1
kernel2 8→ 1 map of 128x64 1x32
conv1 16→ 16 maps of 128x64 5x5

maxpool1 16→ 16 maps of 64x32
conv2 16→ 16 maps of 64x32 5x5

maxpool2 16→ 16 maps of 32x16
fullyconn1 32
fullyconn2 32

softmax 8

Table I: Neural network parameters

A. Data

The classes are created to be pairwise similar, with small
differences making them inherently difficult to separate from
each other. The first two classes are linear chirps, defined
with a small difference in chirp rate. Class 3 and 4 both
consist of two sinusoids with the same parameters but where
class 3 has a third sinusoid in between the first two, with
a much smaller amplitude. Class 5 consists of a single
sinusoid, where class 6 includes two sinusoids with a very
small frequency difference. Class 7 is a Gaussian component
and class 8 is the same Gaussian component with another
Gaussian component situated close the first one, but with
smaller amplitude. The signals are built using the following
components:

Sinusoids:

yk[n] = ak exp (i2πfkn+ φ) (-5)

Linear chirps:

yk[n] = exp

(
i2π

(
fkn+

dfk
2
n2
)
+ φ

)
(-5)

Gaussian:

yk[n] = ak exp

(
− (n− tk)2

2b2k

)
exp (i2πfkn+ φ) (-5)

For all components, the phase is randomized as uniformly
distributed φ ∈ U(0, 2π).
The signals of each simulated class c, is defined

yc[n] =
K∑
k=1

yk[n] + εα[n], n = 0, . . . , 128 (-5)

where εα[n] ∈ N(0, α), is an uncorrelated noise sequence. The
respective parameters of the classes are presented in table II,
where each εσ denotes a new random observation of N(0, σ).
Note that randomness is assigned to all parameters in each
class, additional to the random noise added to each realization.

B. Neural network structure

The neural network structure used to classify the simulated
signals is presented in figure 1. The sizes and number of
kernels are presented in table I. We have here chosen to
set the kernel size of the first large-size kernel to N = 32,
making the comparison with the spectrogram fair. Further, the
number of vector components used was set to M = 8, which
was empirically found. Note that no orthogonality is imposed
on the vectors. Even though they are then not true singular
vectors, they still add upp to a valid kernel. Note also that
the convolutional and fully connected layers are followed by
a ReLu function as activation function [10], unlike the kernel
tuning section which does not.
This neural network structure will henceforth be denoted as
"kernel tuning Convolutional Neural Network" or ktCNN. The
relatively few layers and parameters, and the small number of
simulations used to train the network, as compared to current
state-of-the-art CNNs are motivated to show the performance
gains of using WVD for this quite simple toy example. The
main goal here is to highlight the performance difference
depending on the input.
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Class Components Parameters
1 1 linear chirp f1 = 0.2 + ε0.01

df1 = 0.001 + ε0.001
2 1 linear chirp f1 = 0.2 + ε0.01

df1 = 0.0012 + ε0.001

a1 = 3 + ε0.005
f1 = 0.06 + ε0.005

3 3 sinusoids a2 = 0.5 + ε0.005
f2 = 2f1

a3 = 2 + ε0.05
f3 = 3f1

a1 = 3 + ε0.005
4 2 sinusoids f1 = 0.06 + ε0.005

a2 = 2 + ε0.05
f2 = 3f1

a1 = a2 = 2 + ε0.01
5 2 sinusoids f1 = 0.05 + ε0.01

f2 = 0.051 + ε0.01
6 1 sinusoid a1 = 4 + ε0.01

f1 = 0.0505 + ε0.01

a1 = 3 + ε0.005
7 1 Gaussian f1 = 0.15 + ε0.005

b1 = 12 + ε1.0
t1 = 77 + ε3.0
a1 = 3 + ε0.005
f1 = 0.15 + ε0.005
b1 = 12 + ε1.0

8 2 Gaussians t1 = 77 + ε3.0
a2 = 0.2 + ε0.005

f2 = f1
b2 = 7 + ε1.0
t2 = 27 + ε3.0

Table II: Table of the 8 different classes. Each εσ is a new
independent observation of N(0, σ) for each parameter and
signal realization. The parameters are those defined in eq.
(IV-A)-(IV-A)

We optimize this using WVD (denoted WVD-ktCNN) and
spectrogram (denoted spect-ktCNN), separately.
Further we train a CNN where the first kernel tuning section
is removed, i.e. the WVD and spectrogram are used as input
directly to the convolutional section. All other settings, i.e.
number of maps and neurons, will be identical to those
of ktCNN. These will be denoted WVD-CNN and spect-
CNN, respectively. This is done to show that kernel tuning is
beneficial for the WVD, while not increasing the performance
of spectrogram.
The neural network was implemented, and optimized, using
tensorflow [13]. Optimization was performed using the Adam
method, minimizing the cross-entropy [14]. The minimization
was performed with a learning rate of 10−4, first and second
momentum decay rates were set to β1 = 0.9 and β2 = 0.999
and the zero-division avoiding smoothing term was set to ε =
10−8. A mini-batch size of 200 observations was used.

WVD-ktCNN WVD-CNN spect-ktCNN spect-CNN
0.75

0.8

0.85

0.9

A
c
c
u

ra
c
y

Comparison of performance of the CNN schemes

Figure 2: Box plot showing the results of the 50 different
optimizations.

C. Results

Each neural network structure was re-optimized 50 times,
with the weights in the neural network initialized randomly
each time, to show that the results are consistent. The neural
networks were then used to classify the additional 2000
class realizations in the test set. The results are presented
in figure 2, where a box-plot depicts the accuracy of the 50
versions of each network structure, as evaluated on the test-set.
The two schemes with WVD as input performs significantly
better than the two with spectrogram as input. The resulting
confusion matrix for the best WVD network (WVD-ktCNN)
is presented in table III and the confusion matrix for the
best performing spectrogram classifier (spect-CNN) is found
in table IV. Comparing the two confusion matrices, the WVD
input performs better on 7 out of 8 classes, with class 4 and
5 being the only exceptions. The largest difference is seen
in the 7:th and 8:th classes. The second smaller Gaussian
component in class 8 is heavily smoothed by the spectrogram,
making it difficult to detect. A large difference in accuracy
may also be noted between classes 1 and 2, where the perfect
locality of the WVD makes a difference as compared to the
spectrogram. Note that the spect-ktCNN actually performs
worse than spect-CNN, meaning that no extra information may
be enhanced, and hence the kernel tuning is only inserting
additional randomness, making the network structure perform
worse on average with kernel tuning than without.

V. CONCLUSIONS

We present evidence, both theoretically and practical, that the
time-frequency representation WVD should be used as input,
as opposed to an ad-hoc chosen spectrogram, when classifying
one-dimensional signals using CNN. The WVD has higher
temporal and frequency localization making it superior for
separation of similar classes. A toy example was created to
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Predicted class
Tr

ue
cl

as
s

1 2 3 4 5 6 7 8
1 96 4 - - - - - -
2 7 93 - - - - - -
3 - - 100 - - - - -
4 - - 6 94 - - - -
5 - - - - 86 14 - -
6 - - - - 1 99 - -
7 - - - - - - 74 26
8 - - - - - - 2 98

Table III: Confusion matrix for WVD-ktCNN rounded to
nearest integer percent.

Predicted class

Tr
ue

cl
as

s

1 2 3 4 5 6 7 8
1 89 10 - - - - - -
2 20 80 - - - - - -
3 - - 99 1 - - - -
4 - - 3 97 - - - -
5 - - - - 88 12 - -
6 - - - - 6 94 - -
7 - - - - - - 49 51
8 - - - - - - 28 71

Table IV: Confusion matrix for spect-CNN rounded to
nearest integer percent.

highlight the performance differences. Further investigations
may be done, inserting some restrictions on the kernel tuning
section to make it more stable.
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