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Abstract—In this paper, a new video super-resolution recon-
struction (SRR) method with improved robustness to outliers is
proposed. By studying the proximal point cost function represen-
tation of the R-LMS iterative equation, a better understanding of
its performance is attained, which allows us to devise a new algo-
rithm with improved robustness, while maintaining comparable
quality and computational cost. Monte Carlo simulation results
illustrate that the proposed method outperforms the traditional
and regularized versions of the LMS algorithm.

Index Terms—Super-resolution, R-LMS, outliers

[. INTRODUCTION

Super-resolution reconstruction (SRR) is an approach to
digital image quality improvement that has attracted great
interest in the last decade. SRR consists basically of combining
multiple low-resolution (LR) images of the same scene or
object to form a higher resolution (HR) image, outperforming
physical limits of image sensors. References [1], [2] review
several important concepts and initial results on SRR.

The algorithms available for SRR can be generally divided
in two classes: image SRR, which reconstructs a single HR
image from multiple observations, and video SRR, which re-
constructs an entire HR video sequence. Video SRR algorithms
often improve the quality of the reconstructed sequence by
employing some temporal regularization that constrains the
norm of the changes in the solution between adjacent time
instants [3]-[6].

One of the major issues in SRR is the computational cost of
the algorithms. However, real-time video SRR applications re-
quire simple algorithms. This limitation prompted a significant
interest in the development of low complexity SRR algorithms,
with one notable example being the (R)-LMS algorithm [7].

Unfortunately, the performance of these simple algorithms
tends to be heavily affected by the presence of outliers such
as large innovations. While strategies for obtaining robust
algorithms are common in the literature [5], [8], their com-
putational cost is not comparable to that of algorithms like
the R-LMS. Interpolation algorithms might seem to be a
reasonable option, as their performance is not affected by
outliers. However, they do not offer a quality improvement
comparable to SRR methods [5]. Therefore, it is of interest
to develop video SRR algorithms that combine good quality,
robustness to outliers and low computational cost.

In this paper, a new adaptive SRR algorithm is proposed.
Through a proximal point cost function representation of the
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R-LMS recursive equation, we attain a better understanding of
its quality performance and robustness in different situations.
This allows us to devise a new regularization that addresses
the identified problems. The new resulting algorithm presents
improved robustness and similar quality at a comparable
computational cost.

Section 2 presents the signal model used. In Section 3,
we derive the R-LMS algorithm [7] as a stochastic gradient
solution to the image estimation problem. In Section 4 we
study the behavior of the R-LMS algorithm under different
situations. In Section 5, we propose the new regularization and
derive the corresponding adaptive algorithm. In Section 6 we
illustrate the performance of the proposed algorithm through
simulations. Finally, in Section 7, we conclude this paper.

II. IMAGE ACQUISITION MODEL

Given the NV x N matrix representation of an LR (observed)
digital image Y(¢) and an M x M (M > N) matrix
representation of the original HR digital image X(t), the
acquisition process can be modeled as [1]:

y(t) = DHx(t) +e(t), (1)

where vectors y(t) (N2 x 1) and x(¢) (M? x 1) are the
lexicographic representations of the degraded and original
images, respectively, at discrete time instant {. D is an
N2 x M? decimation matrix and models the subsampling
taking place in the sensor. H is an M? x M? time-invariant
matrix (without loss of generality) that models the blurring.
Here, it is assumed to be known. The N? x 1 vector e(t)
models the observation (electronic) noise, whose properties
are assumed to be determined from camera tests.
The dynamics of the input signal is modeled by [7]

x(t) = G(t)x(t — 1) +s(t), (2)

where G(t) is the warp matrix that describes the relative
displacement from x(¢t — 1) to x(¢). Vector s(¢) models the
innovations in x(t).

III. THE R-LMS-SRR ALGORITHM

Several SRR solutions are based on the minimization of the
estimation error (see [1] and references therein)

€(t) = y(t) - DHX(?) 3)
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where %(t) is the estimated HR image, and €(t) can be
interpreted as the estimate of e(t) in (1). The LMS-SRR
algorithm attempts to minimize the mean-square value of the
Ly norm of (3) conditioned on the estimate x(t) [7], [9]. Thus,
it minimizes the cost function Jys(t) = E{||e(*)]|? | %(¢)}.

Since natural images are known to be intrinsically smooth,
this a priori knowledge can be added to the estimation problem
in the form of a regularization to the LMS algorithm by
constraining the solution that minimizes Jys(t). The R-LMS
algorithm [10], [11] then arises as the solution to the following
constrained optimization problem

Lrws(t) = B{{ly(t) - DHX(t)||* |%(t)} + af|Sx(t)[|*, 4)

where S is the Laplacian operator [12, p. 182]. Note that the
performance surface in (4) is defined for each time instant ¢,
and the expectation is taken over the ensemble.

Following the steepest descent method, the HR image
estimate is updated in the negative direction of the gradient

Vs ()= —2H'DYE[y(t)] ~DH%(1)} +2aS'Sk(t) (5)

and thus the iterative update of x(¢) for a fixed value of ¢ is
given by

)A(k+1(t):ik(t)igv£R—MS(t): k:07177K71 (6)

where K € Z_. is the number of iterations of the algorithm,
and p is the step size used to control the convergence speed.
The factor 1/2 is just a convenient scaling.

The R-LMS algorithm is the stochastic version of the
steepest descent algorithm. Using the instantaneous estimate
of (5) in (6) yields

Xp1(t) =% (t) + pH'D [y (t) —DHXy (t)] — apuS'Sx(t),
k=0,1,....K—1, (1)

which is the R-LMS update equation for a fixed value of ¢.
The time update of (7) is based on the signal dynamics (2),
and is performed by the following expression [7]:

Xo(t+1) =Gt + 1)xk(t). 3

Between two time updates, (7) is iterated for k =0, ..., K—1.
The estimate X(¢) at a given time instant ¢ is then given by
X(t) = Xk (t).

IV. R-LMS PERFORMANCE IN THE PRESENCE OF
OUTLIERS

The R-LMS algorithm is computationally efficient when
implemented with few stochastic gradient iterations (small
K) per time instant t. Nevertheless, one important issue that
plagues most low-complexity super-resolution algorithms is
the occurrence of outliers. Take for instance the R-LMS
algorithm, which is derived under the assumption that the
solution x(¢) is only slightly perturbed between time instants.
When the estimate %(¢) has already achieved a reasonable
quality (i.e. x(t) ~ x(¢)), the initialization for the next time
instant performed according to (8) will already be relatively
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close to the optimal solution, what explains the good steady-
state performance of the algorithm. However, due to the
slow convergence of the R-LMS, the presence of innovation
outliers is known to negatively affect the quality of the super-
resolved images, often creating visible artifacts that can result
in reconstructed images of quality inferior to that of the
observed LR images themselves.

An interesting interpretation of the R-LMS algorithm is
possible if we view each iteration of the gradient algorithm
(6) (for a fixed value of ) as a proximal regularization of the
cost function Lrms(t) linearized about the estimation of the
previous iteration Xy (¢). Proceeding as in [13, Section 2.2] or
[14, p. 546], the gradient iteration (6) can be written as

Xk11(t) = arg min {QQZTSTS&k(t) —2z2"H'D" E[ex ()]

1 N 2
e = 5"} ©)

where E[eg(t)] is the expected value of the observation er-
ror (3) conditioned on X(t) = Xy (¢).

Now, the presence of the squared norm within the external
brackets in (9) means that the optimization algorithm seeks
Xk+1(t) that minimizes the perturbation Xjy1(t) — Xk (t)
at each iteration. Evidencing this property leads to a more
detailed understanding of the dynamical behavior of the algo-
rithm, its robustness properties and the reconstruction quality
it provides.

For instance, this constraint on the perturbation of the
solution explains how the algorithm tends to preserve in X(¢)
details estimated during the previous time instants and that
were present in X(¢t — 1). However, the presence of this term
also opposes changes from X () to X1 (%), and thus tends to
slow down the reduction of the observation error from €g(t)
to €r11(t), as changes in €(t) require changes in Xg(¢).
Therefore, this algorithm cannot simultaneously achieve a fast
convergence rate and preserve the super resolved details. Then,
for the interesting practical case of a small number of iterations
per time instant (small K), the time sequence of reconstructed
images will either converge fast but presenting low temporal
correlation between time estimations (therefore leading to a
solution that approaches an interpolation of y(¢)), or will
converge slowly and yield a highly correlated image sequence
that generally presents better quality but is susceptible to
innovation outliers, thus showing a significant deviation from
the desired signal in their presence.

One should note that, although the solution x(¢) can hardly
approach the desired solution x(¢) in few iterations, if the
total number of iterations K during a single time interval ¢ is
sufficiently large, the solution can adapt to track the innova-
tions even with a large weighting for the term I%Hz —x,(t)]%
This way it becomes possible for the algorithm to achieve and
maintain a good reconstruction quality both during normal
operation and in the presence of an outlier, although at a
prohibitive computational cost, thus defeating the purpose of
the algorithm.

This behavior is illustrated in Figure 1, where the R-LMS
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K.

MSE results for the R-LMS algorithm with different values of o and

algorithm was applied to reconstruct synthetically generated
video sequences containing an outlier at ¢ = 32, with both
a = 2x107% and = 100 x 107%, for 4 = 4, and
for K = 2 and K = 100. It can be seen that a larger
regularization parameter, while increasing the reconstruction
error for small innovations, substantially decreases it in the
presence of outliers. On the other hand, allowing the algorithm
to converge slowly in each time interval leads to a better
reconstruction result in both situations. In the light of the
aforementioned limitations of the R-LMS algorithm, it is
desired to devise an algorithm that performs better both in
terms of robustness, quality and computational cost.

V. A FAST VIDEO SRR ALGORITHM ROBUST TO
INNOVATIONS

In the context of the R-LMS algorithm, the temporal
regularization, which consists in constraining the value of
|x(t) — G(¢)x(t — 1)|| in the SRR cost function [3], [5],
can be interpreted as the application of the well known least
perturbation or minimum disturbance principle.

However, differently from simultaneous video SRR meth-
ods, the proximal regularization described in Section IV
guarantees consistence between consecutive iterations in k.
Therefore, since the previous time instant’s solution x(t—1) is
introduced during the initialization in (8), consistence between
consecutive time instants is achieved if the solution is not
significantly disturbed during all iterations £ = 1,..., K (i.e.
R (£) = %o (1)),

Albeit adding the temporal regularization to the R-LMS al-
gorithm removes its dependence on the time initialization (8),
it makes the algorithm less robust since it prevents conver-
gence to the desired solution x(¢) in the presence of large
innovations even for a large number of iterations (large K).
Furthermore, as already discussed, temporal consistency can
already be retained due to the proximal regularization (even
for large K).

In the case of simultaneous SRR, robust algorithms are
obtained as the result of non-linear cost functions [3], [5], [8].
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Although these techniques achieve good reconstruction results,
their increased computational cost turns real-time operation
unfeasible even for the faster algorithms.

Differently from the simultaneous methods, the robustness
problem of the R-LMS is related with its slow convergence.
Therefore, in order to devise an algorithm that achieves a faster
convergence without experiencing the loss of the estimated
details like the R-LMS does, we will consider a modified
version of the temporal regularization. We will only constrain
the changes in the details of the estimated image between
time instants, therefore preserving the desired content while
allowing the algorithm to converge faster to adapt to the new
information observed in y(¢).

The new algorithm is obtained by minimizing the following
cost function:

L(t) = B{lly(t) - DHX(t)|* | (1)} + ol|Sx(t)|®
+ar|Sx(t) - GHx(t - 1)

Calculating the gradient of the cost function with respect to

x(t), setting it equal to 0, and approximating the statistical

expectations by their instantaneous values yields the iterative
equation for the new algorithm:

Xpp1(t) = X (t) —parS' (Sxx(t) — SG(t)%(t — 1))
—pH'D"(DHX,(t) — y(t)) —paS™Sxk(t), (11)

(10)

where the time update is based on the signal dynamics (2) and
performed by %xo(t + 1) = G(t + 1)xk (¢) [7].

VI. RESULTS

The performance of the proposed algorithm is illustrated
through a Monte Carlo (MC) simulation with 50 realizations.
The HR video sequences were generated using images of
different scenes of size M = 256, with global translational
motion consisting of {—1,1} i.i.d. displacements. The result-
ing sequence was then blurred with an uniform 3 x 3 mask
and downsampled to a factor of 2, resulting in LR images
of dimension N = 128. Finally, white Gaussian noise with
variance 02 = 10 was added to the downsampled images.
Circulant boundary conditions were used for simplicity.

We applied both standard and regularized versions of the
LMS and the proposed algorithm (11), all initialized with a
bicubic interpolation of the first LR image, and used K = 2
iterations per time instant. The super resolved sequences were
compared to the original one in HR and the mean squared error
(MSE) was computed across all realizations. The traditional
temporal regularization [3] did not present any improvement
over the R-LMS algorithm and was therefore omitted from
the comparison. The parameters were selected by exhaustive
search over a small set of images for the algorithms to achieve
their best performance in steady state (for large ¢) considering
known motion, and are shown in Table 1.

We first evaluate the algorithms without the influence of
innovation outliers in order to assess the quality of the recon-
structed images. For a more realist evaluation, the motion be-
tween different frames was estimated using the Horn & Schunk

1552



2017 25th European Signal Processing Conference (EUSIPCO)

LMS R-LMS Algorithm (11)
w 2 275 3
a - 5% 107* 1x107*
ar - - 0.02
TABLE 1

PARAMETER VALUES USED IN THE SIMULATIONS.

251
o4 LMS
77777 R-LMS
P 1L Proposed
Bicubic

MSE [dB]

50 100 150 200
Time samples (t)

Fig. 2. Mean square error evolution with estimated motion.

registration algorithm provided in [15], [16], with the motion
vectors averaged over the entire image to result in global
translational displacements. The MSE performance is depicted
on Figure 2. It can be seen that the algorithms performed
similarly, although a slight improvement was noticed for the
proposed method. A sample of the reconstructed images can
be seen in Figure 3. Although the perceptual quality is similar
for the algorithms being compared, a careful evaluation reveals
a slight improvement for the proposed method (the LMS result
was similar to that of the R-LMS and was thus omitted due
to space limitation).

In order to evaluate the performance of the proposed algo-
rithm under the influence of outliers, the previous simulation
was repeated considering the inclusion of a suddenly appearing
object, independent from the background. This was performed
by including an N x [N black square to the middle of the 32nd
frame of every sequence. The black square remained on the
scene until the 35th frame, when it disappears, emulating the
behavior of a flying bird outlier. The MSE evolution is depicted
in Figure 4. It can be seen that the proposed method offered a
significant performance gain when compared to the remaining
algorithms in the presence of outliers, between frames 32
and 35. A visual inspection of the reconstructed images as
portrayed in Figure 5 supports the quantitative result, since
the black square introduced in the sequence is significantly
better represented for the proposed method (when it is indeed
present in the HR image). This indicates that the proposed
method is more robust to outliers.

VII. CONCLUSIONS

In this paper, a new super-resolution reconstruction algo-
rithm with improved robustness to innovation outliers was
proposed. Trough the proximal point cost function associated
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Fig. 3. Sample of the 200th reconstructed frame (without outliers). (a) Orig-
inal image. (b) Bicubic interpolation (MSE=30.13dB). (c) R-LMS algorithm
(MSE=25.54dB). (d) proposed method (MSE=25.47dB).
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Fig. 4. Mean square error evolution with outlier.

with the R-LMS update equation, its dynamical behavior was
studied, revealing a conflict between tracking the innovations
and preserving estimated content. To address this problem, a
new regularization was then proposed by constraining changes
in the details of the estimated image. Simulation results
showed a significant improvement in the robustness of the
algorithm to large innovations, while a similar image quality
was observed otherwise.
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