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ABSTRACT

We develop a model-free technique to identify weak sources
within dense sensor arrays using graph clustering. No knowl-
edge about the propagation medium is needed except that sig-
nal strengths decay to insignificant levels within a scale that
is shorter than the aperture. We then reinterpret the spatial
coherence matrix of a wave field as a matrix whose support
is a connectivity matrix of a graph with sensors as vertices.
In a dense network, well-separated sources induce clusters in
this graph. The support of the covariance matrix is estimated
from limited-time data using a hypothesis test with a robust
phase-only coherence test statistic combined with a physical
distance criterion. The method is applied to a dense 5200 el-
ement geophone array that blanketed 7 km ⇥10 km of the
city of Long Beach (CA). The analysis exposes a helicopter
traversing the array.

1. INTRODUCTION

Large and dense sensor arrays are becoming more common as
the cost for sensor and communications hardware decreases.
Examples of such arrays are the USArray initiative in seis-
mology with 500 stations covering large parts of the conti-
nental US or the seismic exploration array with 5200 sensors
as presented here. As array sizes increase the occurrence of
within-aperture source events that cause coherent signals over
only a small fraction of all sensors becomes more common.

This work addresses the problem of localizing such weak
sources in a complex and unknown environment. For known
or well characterized media this problem has been addressed
using frameworks such as matched field processing (MFP),
maximum likelihood methods, or migration techniques in,
e.g., acoustics [1, 2, 3], seismology [4, 5, 6], and electromag-
netics [7, 8]. The eigen-structure of the array covariance ma-
trix or its inverse plays an important role in these approaches,
in particular for data-adaptive implementations using, e.g.,
MVDR or MUSIC. A possible solution to locate sources in
dense networks without relying on medium information is
the spatiotemporal analysis of signal intensity [9, 10, 11].
However, using power alone cannot detect sources near or
below the noise floor.

Table 1. Three scenarios considered for M = 19 snapshots
of the noise processes xi and xj (see Figure 1). xi(q) referes
to the q-th snapshot of process xi.

Scenario Variance xi Variance xj

Stationary �

2
i (1 . . . 19) = 1 �

2
j (1 . . . 19) = 1

Heteroscedastic 1 �

2
i (1 . . . 5) = 10 �

2
j (1 . . . 5) = 10

�

2
i (6 . . . 19) = 1 �

2
j (6 . . . 19) = 1

Heteroscedastic 2 �

2
i (1 . . . 5) = 10 �

2
j (1 . . . 14) = 1

�

2
i (6 . . . 19) = 1 �

2
j (15 . . . 19) = 10

We present a model-free analysis approach that can work
also for weak signals through the use of coherent averag-
ing. The only assumption made is that source signals enter
the noise floor within a distance that is much smaller than
the array aperture. That requirement is realistic for large ar-
rays based on wave propagation in moderately attenuating
media such as the earth. We follow a graph-based analysis
paradigm [12, 13]: The sensors are considered vertices in a
graph with edges between vertices existing if the correspond-
ing sensors signals are coherent. Thus the graph connectivity
matrix is defined as the support of the array coherence matrix.

We demonstrate that finding weak within-aperture sources
is tantamount to identifying connected components in this
graph (here referred to as clusters). Such clusters can be found
through an eigenvalue decomposition of a matrix (the graph
Laplacian) that is derived from the connectivity matrix [14].
For more details on the approach see the full paper [15].

2. GRAPH DEFINED BY COHERENCE MATRIX

Consider a large aperture array with N sensors distributed
densely over spatial locations {ri}i=1,...,N . The arrays we
consider are quasi-uniform, but different configurations are
applicable. This section first describes a hypothesis test to
find the support of the coherence matrix of these sensors and
then describes how to use this support to construct a graph
and find its clusters.
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2.1. Coherence hypothesis test

2.1.1. Robust coherence

We compare the behavior of two definitions of magnitude of
coherence for uncorrelated and heteroscedastic signals, i.e.
stochastic signals with time-varying variance. Consider a
zero-mean signal uj(t) observed at location rj and captured
by a window of Q samples at intervals �t. Its discrete Fourier
transform over a period TW = Q�t during the m-th window
(snapshot) is defined as:

xj(m, f) =
Q�1X

q=0

wq uj(mQ�t + q�t) e�ı2⇡(q�t)f , (1)

where the frequencies are discretized f = k
TW

, k = 0, . . . , Q/2
and the weights wq control spectral leakage. All the consid-
erations in this article are made in the Fourier domain.

Let xi(m) and xj(m) be a sequence of snapshots of two
such signals in the frequency domain, m = 1, . . . ,M . The
sample covariance is defined as

�̂ij =
1

M

M�1X

m=0

xi(m)x⇤
j (m) , (2)

with the actual covariance reached for infinite snapshots:
�̂ij

M!1����! �ij .The sample covariance estimate will be af-
fected by the variances in xi and xj that are unrelated to
any physical relation between the two sensors. A customary
attempt to reduce the impact of such variations is to compute
the coherence as a normalized covariance. We compare a
full-sample normalized coherence:

Ĉc
ij =

�������

PM�1
m=0 xi(m)x⇤

j (m)
⇣PM�1

m=0 |xi(m)|2
⌘1/2 ⇣PM�1

m=0 |xj(m)|2
⌘1/2

�������
, (3)

and a version relying only on phase-information:

Ĉij =

�����
1

M

M�1X

m=0

xi(m)

|xi(m)|
x⇤
j (m)

|xj(m)|

����� , (4)

The coherence (4) only relies on phase information and is
invariant against heteroscedasticity, i.e. signals with time-
varying intensity [16] which are common in seismic and
acoustic time-series. To illustrate the effect of heteroscedas-
ticity we consider three scenarios for xi and xj as shown in
Table 1, where xi and xj are uncorrelated and each i.i.d. com-
plex Gaussian with a variance that depends on the snapshot
index. Figure 1A shows the simulated pdf of Ĉc

ij for the three
scenarios (based on 106 realizations). The pdf of the sample
coherence Ĉc

ij substantially deviates from the stationary case
for the two non-stationary scenarios considered. This insta-
bility with respect to heteroscedasticity makes Ĉc

ij a poor
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Fig. 1. (A) The PDF of the sample coherence (3) for uncorre-
lated signals xi and xj . A stationary and two heteroscedastic
scenarios are considered (see Table 1). (B) The pdf of sample
coherence (4) for the same three scenarios (lines overlap).
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Fig. 2. PDF (blue) of the sample coherence Ĉij (4) for un-
correlated noise, �ij = 0, for M=19. The decision threshold
c↵=0.484 is exceeded with probability ↵=0.01. The PDF (or-
ange) of Ĉij for the case of �ij 6= 0 with a common signal
present in the noise of the two recordings (SNR = 3).

choice for a hypothesis test against independence. Figure 1B
shows the pdf of Ĉij for the same scenarios as before and
demonstrates how the distribution of this statistic is invariant
for the considered heteroscedasticity scenarios.

2.1.2. Hypothesis test

We describe a hypothesis test with robust test-statistics to es-
tablish the support of the array coherence matrix �ij . We test
for the two alternative hypotheses:

H0 : �ij = 0 and H1 : �ij 6= 0 , (5)

i.e. the signals observed at locations ri and rj are uncorre-
lated (H0) or correlated (H1). We use the magnitude of the
robust sample coherence Ĉij (4) to test the hypothesis. If
H0 is true, then Ĉij will be distributed according to a pre-
computable PDF (Figure 2 shows the PDF for M=19 derived
by simulation). The hypothesis H0 is accepted if Ĉij  c↵
and rejected otherwise. The threshold coherence magnitude
c↵ is set such that the probability of falsely rejecting the hy-
pothesis is ↵, formally c↵ = cdf�1(1 � ↵), where cdf�1(·)
is the inverse of the cumulative distribution function of Ĉij

estimated by simulation (blue plot in Figure 2).
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2.2. Graph preliminaries

An undirected (symmetric) and unweighted graph G consists
of N vertices {vi}i=1...N and edges {eij}j�i 2 {0, 1} where
eij = 1 means that vi and vj are connected. The edges define
a binary and symmetric connectivity matrix E with Eij = eij .
The number of edges connecting to vertex vi is its degree di.
The mean vertex degree � of a graph is the average over the
vertex degrees of all its vertices. If � approaches a constant
as N increases the graph is sparse [17].

A connected component U ⇢ G is a subset of vertices
and edges in G for which every pair of vertices v, v0 2 U is
connected directly or indirectly through a sequence of edges
in U Finding connected components is a basic task in graph
analysis [18] and is an example of spectral clustering for non-
overlapping clusters. In this context the connected compo-
nents are found using the eigen-vectors of the graph Lapla-
cian, which is derived from the connectivity matrix E [14].
We assume now that there are K fully connected components
Uk in G, i.e. each vertex in Uk connects to all other vertices
in Uk. Let uk = [uk

1 , . . . , u
k
N ]T be the vertex indicator vector

of Uk (uk
i = 1 if vki 2 Uk and 0 otherwise). The connectivity

matrix of G is then (see [15]):

E =
X

k

uku
T
k , (6)

where k indexes the set of connected components of G.
Finally, consider the random, unweighted graph G0(N, p)

with N vertices where all pairs of vertices have the same
probability p of being connected. The mean vertex degree
in G0(N, p) is therefore � = (N � 1)p because every vertex
can connect with all N � 1 other vertices with equal proba-
bility. A large fraction of vertices in a random graph tend to
be connected when � > 1 with about 90% being connected
when � > 2.5 [17]. Such a high connectivity, e.g. 90%, will
thus occur above a threshold probability of

p0 = 2.5/(N � 1) , (7)

i.e. for an edge probability above p0 most vertices is con-
nected.

2.3. Constructing an array graph

Armed with the hypothesis test in Section 2.1.2 we construct
a coherence graph G0 with the following connectivity matrix:

E0
ij =

(
1 if Ĉij > c↵

0 otherwise ,
(8)

i.e. two vertices are connected if the corresponding signals
exhibit significant coherence. This straight-forward construc-
tion of an array graph, however, is insufficient because of the
statistical fluctuations of the hypothesis test. Even if the ar-
ray is sensing N uncorrelated noise signals the probability of

observing Ĉij > c↵ is ↵ for all receiver pairs. This means
that G0 is a random graph G0(N,↵). A graph with, say,
300 sensors will likely have a giant connected component if
↵ > 2.5/(300 � 1) = 0.008. For graphs constructed with
a less conservative threshold any attempt to find smaller con-
nected components that are not due to chance is thus futile.

We modify (8) to define a localized coherence graph
G(c↵) with connectivity matrix:

Eij =

(
1 if Ĉij > c↵ and i 2 N(j)

0 otherwise.
(9)

where N(j) is the index set of the nearest neighbors of sen-
sor j. For a regular lattice, the nearest neighbors are here
limited to eight sensors. Besides being coherent any two con-
nected sensors are thus also required to be spatial neighbors.

Enforcing spatially short connections limits the number
of neighbors any vertex can connect to in a way that is inde-
pendent of the global graph size and the graph remains sparse
for large arrays. The criterion (9) thus reduces the chance
of forming clusters by chance, even for values of ↵ that are
above the threshold suggested by (7). Sensor clusters can still
have a spatial extent beyond that given by the nearest neigh-
bors as long as the vertices in the cluster are contiguous in
space.

To characterize the spatial extent of each connected com-
ponent Uk a two-dimensional Gaussian probability density
function is estimated from the sensor locations of the vertices
of Uk with mean and covariance, respectively:

mk =
1

|Uk|
X

i2Uk

ri

⌃k =
1

|Uk|
X

i2Uk

(ri �mk)(ri �mk)
T , (10)

where |Uk| is the number of vertices in Uk. The source area
is the region where the point source is likely located and is
here defined as the ellipse that contains a probability mass p
of the Gaussian defined in (10):

⌦k(p) = {r | (r�mk)
T
⌃

�1
k (r�mk) < �2

I(p)} , (11)

where �2
I is the cumulative inverse �2-distribution with two

degrees of freedom (because the Gaussian is 2D).
For a source within the array aperture ⌦ is the geographic

area within which the source is estimated to be. Source di-
rectionality, physical obstacles or attenuation heterogeneities
in the propagation medium can cause ⌦ to be not centered
around a source. Sensor geometry such as array gaps and
boundaries will also cause a cluster to move away from its
source. In those special cases the identified clusters can, how-
ever, still serve to select a data subset for follow-up analy-
sis with other array processing methods since by definition
its sensors contain significant signal levels from a common
source. Conventional beamforming using just the data from
the vertices in Uk could be used.
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3. SOURCES INDUCE GRAPH CLUSTERS

The relation between sources within an array and the clusters
of a graph constructed from the array data has been presumed
so far. Combining signal features for clustering purposes to
analyze sources was used implicitly in a heuristic approach
in [19] for the difficult case of an ad-hoc and dynamic sen-
sor network with communication constraints. In this section
we make the relation between sources and network clusters
explicit for the asymptotic case of infinite observation time
without communications constraints but under the assumption
that source-to-receiver coherence is insignificant after some
physical distance.

Consider again a large aperture array with N sensors
distributed densely over spatial locations {ri}i=1,...,N . It is
assumed that there are weak sources within the aperture that
produce signals that propagate through space. For a given
frequency the channel between any such source location ⇢
and sensor location ri is characterized by a Green’s function,
g(ri,⇢). Let the vector g(⇢) = [g(r1,⇢), . . . , g(rN ,⇢)]T 2
CN be the frequency domain response of the array to a
source at location ⇢. Consider then ⇢k to be the location
of K sources {⇢k}k=1,...,K with an associated response
g(⇢k) ⌘ gk and source signals sk. The measured signal at
the N array sensors is thus modeled as:

x =
KX

k=1

sk gk + n . (12)

where n = [n1 . . . nN ]T2 CN is a multivariate i.i.d. noise
process. From (12) the covariance matrix is:

� =
⌦
xx

H
↵

=

*
KX

k,l=1

sks
⇤
l gkg

H
l

+
+
⌦
nn

H
↵

=
KX

k,l=1

hsks⇤l igkg
H
l + D =

KX

k=1

h|sk|2igkg
H
k + D , (13)

Here we exploit the mutual independence between the source
and noise processes

⌦
sin

⇤
j

↵
= 0,

⌦
nin

⇤
j

↵
=
⌦
sis

⇤
j

↵
=

ai�ij , 8i, j (ai is an unknown power), and D is a diago-
nal matrix with Dii the noise variance of sensor i.

We assume that there is a distance � smaller than the array
dimensions such that g(ri,⇢) is small if k⇢ � rik2 > �, i.e.
signals cannot be detected beyond �. This is used to form
connected graph for each source. If all sources are separated
by at least 2�, k⇢k�⇢lk2 > 2�8k 6= l, then the corresponding
support sets of the sources do not overlap.

Let I(v) be the support indicator function of a vector or
matrix v. The lack of overlap of the gk and the support-
indicator function properties (see [15]) allow us to write the
support of the sum in (13) as

I(�) = I
 

KX

k=1

|sk|2gkg
H
k

!
=

KX

k=1

I(gk)I(gk)
T . (14)
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Fig. 3. Connected components of the array graph are used
to find coherent sensor clusters in the Long Beach array. (A)
The clusters at 20 Hz from four 10.2 s windows after 10:48h
on March 11th. The spatial extent of the clusters ⌦(0.5) is
indicated by dashed ellipses (11). (B) A North-to-South heli-
copter transect is captured in a sequence of coherent clusters
at 47 Hz over consecutive analysis time periods (starting at
05.53h). The colors change from red to blue as the analysis
windows advance in time. The arrow points to the receiver
from which the spectrogram (C) was computed around the
time of increased coherence.

We now define Eij = I(�) as the connectivity matrix of
a graph G with N vertices (sensors), i.e. there is an edge
between vertices i and j if Eij = I(C)ij = 1. Such a
graph G will have exactly K connected components, i.e. K
non-overlapping subsets Sk 2 G whose vertices are indicated
by I(gk). The connected components thus correspond to the
sensor clusters that sensed the K sources.

Finding connected components is a standard task in graph
analysis [18]. In section 4 we use an approach from spec-
tral clustering [14] which uses the eigendecomposition of the
graph Laplacian, which is derived from the connectivity ma-
trix as

L = K�E = USU

T , (15)

with K a diagonal matrix with Kii =
PN

j=1 Eij and the lat-
ter is the eigen-decomposition of L. Following [14, Proposi-
tion 2] there will be exactly K eigenvectors with eigenvalue 0
and the column vectors in U corresponding to those eigenvec-
tors will each indicate one of the K connected components
through its non-zero entries.

4. LONG BEACH (CA) GEOPHONE ARRAY

We apply the above technique on a geophone array that was
deployed over an area of 7 ⇥ 10 km in Long Beach (Califor-
nia, US) as part of an industrial seismic survey [10, 6]. The
array consisted of more than 5200 geophones (OYO CT32D
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vertical velocity sensors with 10 Hz corner frequency) sam-
pling at a period of �t=4 ms (array configuration shown in
Figure 3A). For the most part the array had a quasi-regular
layout with a relatively even spatial sampling.

The ground velocity data stream of each geophone is
transformed following (1) into a sequence of Fourier coef-
ficients xi(m, f) using Q = 256 samples (TW = 1.02 s)
and a Hanning window wj with time windows overlapping
by TW /2. The coherence matrix Ĉij (4) is computed for
41 frequency bins from 9.8-48.8 Hz using M = 19 snap-
shots (TW /2 ⇥ (M + 1)=10.2 s). A matrix with about
52002 ⇡ 27 · 106 entries is therefore computed for every
frequency bin and time period. In a 24 hour analysis period
there are about 9400 time windows.

Continuing with the coherence matrices at 20 Hz a lo-
calized array graph G(c↵=0.01) is defined and all connected
components are identified. Figure 3A shows the coherent
groups found over four consecutive 10.2 s analysis windows
starting on March 11th, 10:48:48h. For clarity, only clusters
with more than nine vertices are shown in order to focus on
larger phenomena. The period contains a 40 s stretch during
which a seismic vibrotruck is known to have been operating
in the Southeast of the array, which is confirmed by a clus-
ter in that area. This source dominated over the background
and was also broad-band (about 10-80 Hz) and therefore cor-
responds to the type of source that was also detected with the
energy-only approach reported in [10].

Figure 3B shows a sequence of coherent groups at 47 Hz
for consecutive windows starting March 11th at 05.53h. They
show a north-south transect over 6 km during the course of
about 95 s. The average velocity along the trajectory is 60 m/s
(134 mph). Figure 3C shows a spectrogram from a receiver
within the trajectory of the moving source computed around
the time the coherence was observed. The observed Doppler
shifts of fhigh/flow ' 1.4 ' (1 + 60

340 )/(1 � 60
340 ) are consis-

tent with the approximate velocity estimate. The narrow-band
harmonics at multiples of 12 Hz suggest that the passage of a
helicopter was captured.
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