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Abstract—In this paper, we apply probability density function
(PDF) projection to arrive at an exact closed-form expression
for the marginal distribution of the visible data of a restricted
Boltzmann machine (RBM) without requiring integrating over
the distribution of the hidden variables or needing to know the
partition function. We express the visible data marginal as a
projected PDF based on a set of sufficient statistics. When a
Gaussian mixture model (GMM) is used to estimate the PDF of
the sufficient statistics, then we arrive at a combined RBM/GMM
model that serves as a general-purpose PDF estimator and
Bayesian classifier. The approach extends recusively to compute
the input distribution of a multi-layer network. We demonstrate
the method using a reduced subset of the MNIST handwritten
character data set.

I. INTRODUCTION

A. Background and Problem Statement

A restricted Boltzmann machine (RBM) is a type of recur-
rent neural network made popular by Hinton and collegues [1].
The RBM describes the joint distribution between a so-called
visible data vector, ① and hidden data vector ❤. We assume
throughout the paper that ❤ is of lower dimension than ①.
The interaction between ① and ❤ is defined by the conditional
distributions ♣✭①❥❤❀✄✮ and ♣✭❤❥①❀✄✮, which are specified.
One generates samples of the pair ①�❤ by starting with some
sample of either vector, say ❤, then generate ① according to
♣✭①❥❤❀✄✮, then generate ❤ according to ♣✭❤❥①❀✄✮, and so on.
After a number of these forward-backward iterations, (Gibbs
sampling), the joint distribution converges to the theoretical
distribution

♣✭①�❤❀✄✮ ❂
❡✁❊✂☎✆✝✞✄✟

❑✭✄✮
� (1)

where ✄ is the set of RBM parameters, ✠✭①� ❤❀✄✮ is the
energy function that describes the interaction between data
vectors ① and ❤, and ❑✭✄✮ is the normalization constant,
called partition function

❑✭✄✮ ❂

❩

✝

❩

☎
❡
✁❊✂☎✆✝✞✄✟

❞❤ ❞①� (2)

that generally cannot be found in closed form.

The conditional distributions are shown in diagramatic
form in Figure 1. In the “backward” direction, we generate the
① ✷ ❘◆ from ❤ ✷ ❘▼ by generating the intermediate variable
☛ ✷ ❘◆ using the affine transformation ☛ ❂ ❲❤ ✰ ❜� then
generating the elements of ① independently according to the
node generation distribution ✡✐ ✘ ♣✭✡✐❀ ☞✐✮� ✶ ✔ ✌ ✔ ✍✿

We will discuss typical node generation distributions below.

To generate ❤ from ① (“forward” path), we generate the
intermediate variable ✎ ✷ ❘

▼ by the affine transformation

✎ ❂
✏
✑✁✒❲

✓✵
① ✰ ❝� where ✑ is the diagonal matrix of

variances ✛✕✒� ✛
✕
✕ ✿ ✿ ✿ ✛

✕
◆ (assumed to be the identiy matrix for

non-Gaussian RBMs), then generate the individual elements of
❤ independently according to the node generation distribution
✖✐ ✘ ♣✭✖✗❀ ✙✗✮� ✶ ✔ ✚ ✔ ✜✿ Note that ❲ is the same
matrix as was used in the backward path. The RBM is normally
trained using contrastive divergence (CD) so that the marginal
distribution

♣✭①❀✄✮ ❂

❩

✝
♣✭①�❤❀✄✮ ❞❤ ❂

❩

✝

❡✁❊✂☎✆✝✞
✄✟

❑✭✄✮
❞❤ (3)

approximates the distribution of some training data ① [1]. The
problem of the RBM that we seek to solve is the intractability
of (3), which must be approximated [2]. Even if we recast (3)
as

♣✭①❀✄✮ ❂

❩

✝
♣✭①❥❤❀✄✮ ♣✭❤❀✄✮ ❞❤� (4)

this requires knowing ♣✭❤❀✄✮, a chicken and egg problem.
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Fig. 1. Restricted Boltzmann Machine (RBM). For non-Gaussian input
RBMs, ✢ ✣ ■.

The RBM is very popular because the deterministic ap-
proximation of its forward path (replacing the node generation
distributions with their expected value) is a feed-forward
network layer that can be used to initialize neural networks.
Theoretically, the RBM can be seen as an implementation of
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Factor analysis with an infinite number of mixture components
and can also be trained using the efficient contrastive diver-
gence (CD) algorithm. But, generating from the model requires
Gibbs-sampling, the partition function (2) cannot in general
be computed, and determining the marginal distribution (3)
requires integration. These factors make the RBM ill-suited as
a general-purpose generative model, such as for example the
Gaussian mixture model (GMM). The purpose of this paper is
to lift these disadvantages.

B. Paper Organization

II. MATHEMATICAL RESULTS

A. Types of RBMs

General Comments. The type of RBM is determined by
the input and output node generation distributions ♣✭①❀ ☛✮ and
♣✭❤❀ ☞✮, respectively. Generally, in the literature, we see the
discrete Bernoulli RBM created by the sigmoid node gener-
ation function ♣✭①✐ ❂ ✶❀ ☛✐✮ ❂

�
�✰❡✁✂✄

☎ or, for continuous-

valued data, the Gaussian RBM created by the Gaussian node

generation function ♣✭①✐❀ ☛✐☎ ✛
✷
✐ ✮ ❂ ✭✆✙✛✷✐ ✮

✝�✞✷✟
✝
✠✡✄✁✂✄✌✍

✍✎✍✄ .
We find it also useful to use the truncated exponential distri-
bution (TED) node generation function for continuous-valued
data limited to the range ❬✵☎ ✶❪, ♣✭①❀ ☛✮ ❂ ❈✭☛✮ ✟✏✑, where

❈✭☛✮ ❂

✒
✏

❡✂✝�

✓

✿ The mean of this density is ✕✭☛✮ ❂

❡✂

❡✂✝� ✔
�
✏ . Figure 1 can be used for reference.

TED-TED RBM. The TED-TED RBM has the energy
function ❊✭✖☎ ✗❀✘✮ ❂ ✔✖✚❜ ✔ ❝✚✗ ✔ ✖✚❲✗☎ which can be
verified using the procedure of Welling et al [3], and is the
same as the energy function for the Bernoulli-Bernoulli RBM.
The conditional distribution of ✖ given ✗ is ♣✭✖❥✗❀✘✮ ❂
◗◆
✐✜� ❈✭☛✐✮✟

✏✄✑✄ ❂ ❈✭✢✮✟✣
✤✥☎ where ✢ ❂ ❜ ✦ ❲✗.

The conditional distribution of ✗ given ✖ is ♣✭✗❥✖❀✘✮ ❂
◗▼
✧✜� ❈✭☞✧✮✟

★✩✪✩ ❂ ❈✭✫✮✟✬
✤✥☎ where ✫ ❂ ❝ ✦ ❲✚✖. The

RBM parameter set is ✘ ❂ ❢❜☎ ❝☎❲❣.

Gauss-Gauss RBM. The formulation for the Gauss-
Gauss RBMs is lifted from [4]. The energy function is:
❊✭✖☎ ✗❀✘✮ ❂

�
✷✭✖ ✔ ❜✮✚✯✝�✭✖ ✔ ❜✮ ✔ ✖✚✯✝�❲✗ ✦

�
✷✭✗ ✔ ❝✮✚✭✗ ✔ ❝✮✿ The conditional distribution of ✖ is

♣✭✖❥✗❀✘✮ ❂ ✭✆✙✮✝
◆✞✷❥✯❥✝

�✞✷✟✝
✱
✍ ✲✥✝✣✳

✤✴✁✱✲✥✝✣✳☎ where
✢ ❂ ❜✦❲✗. The conditional distribution of ✗ is ♣✭✗❥✖❀✘✮ ❂

✭✆✙✮✝▼✞✷✟✝
✱
✍ ✲✸✝✬✳

✤✲✸✝✬✳☎ where ✫ ❂ ❝ ✦ ❲✚✯✝�✖. The
RBM parameter set is ✘ ❂ ❢❜☎ ❝☎❲☎✯❣✿

Gauss-TED RBM. The Gauss-TED RBM has the en-
ergy function ❊✭✖☎ ✗✮ ❂

�
✷✭✖ ✔ ❜✮✚✯✝�✭✖ ✔ ❜✮ ✔ ❝✚✗ ✔

✖✚✯✝�❲✗✿ The conditional distributions are ♣✭✖❥✗❀ ✘✮ ❂

✭✆✙✮✝◆✞✷❥✯❥✝�✞✷✟✝
✱
✍ ✲✥✝✣✳

✤✴✁✱✲✥✝✣✳☎ where ✢ ❂ ❜ ✦ ❲✗,

and ♣✭✗❥✖❀✘✮ ❂
◗▼
✧✜� ❈✭☞✧✮✟

★✩✪✩ ❂ ❈✭✫✮✟✬
✤✸☎ where

✫ ❂ ❝ ✦❲✚✯✝�✖✿

B. PDF Projection

Let ③ ❂ ❚✭✖✮ be some deterministic mapping from ❳ ✹

❘◆ to ❩ ✹ ❘▼ , where ✺ ❁ ✻ . Let ♣✭✖❀❍✼✮ be some
known reference distribution on ❳ , and let ♣✭③❀ ❍✼✮ be the
corresponding distribution imposed on ❩ by transformation

❚ . Let ♣✭✖❀ ✽✮ be some unknown distribution that we want to
approximate. The projected PDF is given by

❫♣✭✖❀✘✮ ❂
♣✭✖❀❍✼✮

♣✭③❀ ❍✼✮
❫♣✭③❀ ✘✮☎ (5)

where ❫♣✭③❀ ✘✮ is an estimate of the distribution of ③ when ✖

is drawn from ♣✭✖❀ ✽✮. It can be shown [5] that (5) is a PDF
(integrates to 1), and is consistent with ❫♣✭③❀ ✘✮, meaning that
samples drawn from ❫♣✭✖❀✘✮ and passed through transforma-
tion ❚ will have exactly distribution ❫♣✭③❀✘✮. It is therefore
a reasonable estimate of ♣✭✖❀ ✽✮ and under certain conditions
[5], (5) is the maximum entropy (MaxEnt) PDF among all
PDFs consistent with ❫♣✭③❀✘✮. But, more importantly, (5)
becomes exact, meaning that ❫♣✭✖❀ ✘✮ ✾ ♣✭✖❀✘✮☎ under the
following two conditions [6]: (a) that ❫♣✭③❀✘✮ ❂ ♣✭③❀✘✮,
and (b), that ③ is a sufficient statistic for the likelihood ratio
▲✭✖✮ ❂ ♣✭✖❀✘✮❃♣✭✖❀❍✼✮✿ This happens if we can write
▲✭✖✮ ❂ ❤✭❚✭✖✮✮, for some function ❤ [7]. Thus, if ③ is a
sufficient statistic for ▲✭✖✮ and if we know ♣✭③❀✘✮, then

♣✭✖❀✘✮ ❂
♣✭✖❀❍✼✮

♣✭③❀ ❍✼✮
♣✭③❀ ✘✮☎ (6)

which is an exact expression. We can exploit this to get an
exact expression for (4) without integration.

C. Sufficient Statistics for various RBM types

TED-TED RBM. Substituting the energy function
❊✭✖☎ ✗❀✘✮ for the TED-TED RBM into (3) , we get

♣✭✖❀✘✮ ❂
✶

❑✭✘✮
✟
✥✤❄

❅

✸
✟
❆❇✤✥✰❉❋✤✸

❞✗ (7)

For data limited to ✵ ❁ ①✐ ❁ ✶, the uniform reference
hypothesis ♣✭✖❀❍✼✮ ❂ ✶☎ which assumes ❢✖✐❣ are iid uniform-
distributed, provides the MaxEnt projected PDF [5]. Therefore,
the likelihood ratio ▲✭✖✮ ❂ ♣✭✖❀ ✘✮❃♣✭✖❀❍✼✮ is the same as
(7). Now, it is obvious that (7) may be written as a function of
the sufficient statistic ③ ❂ ❚✭✖✮ ❂ ❬❲✚✖☎ ❜✚✖❪ ❂ ❲✚

●✖☎

where ❲● ❂ ❬❲☎ ❜❪✿ Figure 2 shows the feed-forward
network layer for extracting the sufficient statistic for the TED-
TED RBM, where ✯ ❂ ■. We have added the bias ❝ and
subsequent non-linearity ❫✗ ❂ ❏✭③ ✦ ❝✮☎ where ❏✭ ✮ is the
activation function that produces the expected value of the

node generation distribution. Note that ❫✗ is a deterministic
approximation to the RBM’s random hidden variable ✗ (con-
ditional mean), in the same way as is done in stacked RBMs
[1]. Note that in Figure 2, the auxilliary statistic ❜✚✖ is treated
like other nodes by adding a suitable bias ❖✼, and passing it
through a non-linearity.

Gauss-Gauss RBM. For the Gauss-Gauss RBM, we use
the reference hypothesis

♣✭✖❀❍✼✮ ❂ ✭✆✙✮
✝◆✞✷

❥✯❥
✝�✞✷

✟
✝✱
✍ ✥
✤✴✁✱✥

☎ (8)

which assumes ❢✖✐❣ are iid Gaussian zero-mean with variance
✛✷✐ . Substituting the energy function for the Gauss-Gauss RBM
into (3) , and dividing by the reference hypothesis, the resulting
likelihood ratio becomes

▲✭✖✮ ❂
♣✭✖❀ ✘✮

♣✭✖❀❍✼✮
❂ ❑

✚
❅

✸
✟
✥✤✴✁✱❆❇✸✰❄❋

✟
✝ ✱
✍ ✲✸✝❉✳

✤✲✸✝❉✳
❞✗☎

(9)
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where ❑✵ is a constant independent of ①. Clearly ▲✭①✮ can
be written in terms of the sufficient statistic ③ ❂ ❚✭①✮ ❂

❲✵
❜✝

�✶①❀ where ❲❜ is defined above. This is illustrated
in Figure 2 which generalizes to all RBM types, and has

additional processing to produce ❫❤, which approximates the
RBM’s hidden variable.

Gauss-TED RBM. Similar to the Gauss-Gauss RBM, we
use the Gaussian reference hypothesis (8) and can show that
the sufficient statistic is also ③ ❂ ❚✭①✮ ❂ ❲✵

❜✝
�✶①✿

D. Discussion and Implemetation

We have suggested replacing the integral expression (4) by
(6), so let’s compare the two approaches. Both methods assume
we know the distribution of the lower-dimensional variable
(❤ or ③). But, ❤ is distributed jointly with ① - it requires
Gibbs sampling in order to generate samples of ❤, whereas
③ is deterministically dependent upon ①, so we only need to
convert the visible data ① to ③ using a fixed transformation.
Even more important is the fact that (4) requires integration,
whereas (6) is evaluated at just one point (①,③).

The disadvantage of (6) is that evaluating ♣✭③✁❍✂✮ is
sometimes non-trivial and requires knowing the exact dis-
tribution of the sufficient statistic ③ when ① is drawn from
♣✭①✁❍✂✮. This problem has been studied in detail and solutions
exist for a wide range of features [8], [9], [10], [11], [5].
For the TED-TED RBM which uses the uniform reference
distribution, ♣✭③✁❍✂✮ is derived in the Appendix. For the
Gauss-Gauss RBM, ♣✭①✁❍✂✮ is given by (8), so ♣✭③✁❍✂✮

is Gaussian with covariance ❲✵
❜✝

�✶❲❜. As illustrated in
Figure 2, it is convenient to first define the “whitened” statistic
② ❂ ✝�✶✄✷①, whose distribution under ❍✂ is the canonical

Gaussian ♣✭②✁❍✂✮ ❂ ✭☎✙✮�◆✄✷ ❡�
✆
✞✟

✠✟✿ Then, the sufficient

statistic is re-written in terms of ②: ③ ❂ ❲✵
❜✝

�✶✄✷②✿

E. Energy Statistic (ES)

In Figure 2 (bottom), we have shown optional “energy
statistic” (ES). An ES is an optional scalar statistic, but insures
the maximum entropy property of the PDF projection [11],
[5]. As explained in [5], when the input data is limited to
✡ ✔ ☛✐ ✔ ☞, (i.e. TED-TED RBM) no energy statistic is strictly
required, but it is often helpful to integrate the first-order ES
❡ ❂

P

✐ ☛✐ into the matrix W. For the Gauss-Gauss RBM,
we could use the second-order energy statistic ❡ ❂ ❧♦❣✭②✵②✮

[5], but it is better to make the energy statistic approximately

independent of ❫❤ by subtracting the conditional mean first:

❡ ❂ ❧♦❣ ❬✭② ✌ ❫②✍✮
✵✭② ✌ ❫②✍✮❪ ❀ where ❫②✍ ❂ ✝�✶✄✷✭❲❫❤ ✰ ✎✮✿

This orthogonalized energy statistic is a good feature because
it is an indicator of fit to the PDF (4). The energy statistic is
appended to ③. Use of the energy statistic changes ♣✭③✁❍✂✮,
which must be analyzed in the method given in [5] Section
III.B. The energy statistic can also be used for re-synthesis of
the input data according to the MaxEnt method [11], [5].

F. RBM Analysis

We now reduce (2) to a single integral of dimension ▼ ,
so that we can evaluate (3) numerically.

Analysis of TED-TED RBM. For the TED-TED RBM,

❑✭✏✮ can be written ❑✭✏✮ ❂

❩

✑

❩

✒
❡❢

✒✠✓✕❝✠✑✖❞❤ ❞①❀ where
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Fig. 2. Feed-forward NN that extracts the sufficient statistic for an RBM.
For TED or Bernoulli input RBM’s, ✗ ✘ ■ and ✚ ✘ ✛.

✜ ❂ ✎ ✰ ❲❤✿ But, since the integrand with ❤ fixed is a
TED distribution on ①, it integrates to the inverse of the TED
constant ❈✭✢✮, so we can reduce this to

❑✭✏✮ ❂

❩

✑

❡❝
✠✑

❈✭✜✮
❞❤❀ (10)

which can be integrated numerically. Once we have ❑✭✏✮, we
can compute the marginal of ① for any sample ① as follows. We

rewrite (3) as ♣✭①✁✏✮ ❂
✣✤
✠✥

✦✧✏★

❩

✑
❡✩

✠✑❞❤, where ✪ ❂ ✫✰❲✵①,

and where it can be seen that for a fixed ① it has a TED
distribution over ❤, which integrates to the inverse of the TED
constant ❈✭✪✮. Therefore,

♣✭①✁✏✮ ❂
☞

❑✭✏✮

❡✒
✠✬

❈✭✪✮
✿ (11)

Analysis of Gauss-Gauss RBM. The Gauss-Gauss RBM
is special because the partition function can be determined
analytically. Note that the Gauss-Gauss energy function can
be written

☞

☎

✯
✭① ✌ ⑦✎✮

✭❤ ✌ ⑦✫✮

✱✵ ✯
✝�✶ ✌✝�✶❲

✌❲✵✝�✶ ✲

✱ ✯
✭① ✌ ⑦✎✮

✭❤ ✌ ⑦✫✮

✱

✰❈❀

(12)
where ❈ is independent of ① and ❤, and the adapted mean

vectors ⑦✎ and ⑦✫ are related to ✎ and ✫ by:
✯

⑦✎

⑦✫

✱

❂

✯
✲ ✌❲

✌❲✵✝�✶ ✲

✱�✶ ✯
✎

✫

✱

✿

It is therefore clear that the Gauss-Gauss RBM is a multi-
variate Gaussian distribution and the marginal of ① is also

Gaussian with mean ⑦✎ and covariance equal to the upper
✳ ✴ ✳ diagonal block of the inverse of the kernel matrix
in quadratic form (12).

G. Applications

A general-purpose PDF estimator for high-dimensional
data can be created by training the RBM on ①, extracting the
sufficient statistic ③, and approximating ♣✭③✮ with a GMM,
then applying equation (6). Alternatively, the method can be
applied recursively to a multi-stage network by approximating
♣✭③✮ by another RBM (stacked RBM). This results in the exact
PDF of the full network1.

1The only approximation would be the PDF of the output of the final layer.
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III. NUMERICAL VALIDATION

We now compare (6) with (4) evaluated numerically.

A. TED-TED RBM

We trained a TED-TED RBM of output dimension ▼ ❂

✸ using contrastive divergence on data from the MNIST
handwritten character corpus. We created 1000 independent
samples of ♣✭①❀✄✮ by Gibbs-sampling the RBM. Starting with
independent uniformly-distributed random data, we performed
500 forward-backward passes. The ending sample of ① was
then regarded as a sample of ♣✭①❀✄✮. We computed ❑✭✄✮

using (10) using MATLAB’s integral3() function. For PDF
projection, we implemented (6) using uniform reference hy-
pothesis, evaluated ♣✭③❀❍✵✮ using the method in Section A,
and approximated ♣✭③❀✄✮ from the 1000 samples of RBM
“training data” using a Gaussian mixture. We used no energy
statistic in this experiment. For validation, we selected 400
samples of the 1000 RBM training samples. For each sample
we computed the marginal using (11), plotting it on the X-axis,
then using (6), plotting it on the Y-axis in Figure 3 (left).

300 400 500

Numerical integral

320

340

360

380

400

420

440

PP
T

TED-TED

-400 -350 -300

Theoretical Marginal

-400

-390

-380

-370

-360

-350

-340

PP
T

Gauss-Gauss

Fig. 3. X-axis: analytic or numerically-determined marginal, Y-axis PDF
projection. Left: TED-TED, Right: Gauss-Gauss. Circles: Gibbs-sampled data.
Dots: Direct-sampled data.

B. Gauss-Gauss RBM

We repeated the same experiment using a Gauss-Gauss
RBM. We expanded the MNIST data to the real line by
applying an inverse sigmoid function to the pixel values, so
that the pixel data was approximately zero mean and most of
the data was in the range [-10,10]. We then trained a Gauss-
Gauss RBM using contrastive divergence on some data of
character “3”. To provide training data of ♣✭①❀✄✮, we used
two approaches: (a) Gibbs-sampling the RBM, (b) directly
sampling the RBM’s theoretical marginal (see Section II-F).
For the PDF projection approach, we evaluated (6), using no
energy statistic. Under reference hypothesis (8), ♣✭③❀❍✵✮ is
Gaussian with covariance ❲�

❜✝
✁✶❲❜✿ We trained a Gaussian

mixture to approximate ♣✭③❀✄✮✿ We compared (6) with the
theoretical Gaussian marginal for a 400 sample subset of the
1000 RBM training samples. This is plotted in Figure 3 (right)
for the Gibbs-sampled data (dots) and direct-sampled data
(circles). No significant difference can be seen.

IV. CLASSIFICATION EXPERIMENT

A. Reduced MNIST (R-MNIST) Data description

The MNIST OCR data corpus [12] set consists of ten hand-
written digits 0-9 divided into two sub-corpora: the training

sub-corpus with about 6000 training samples of each digit,
and the testing sub-corpus with about 1000 testing samples
of each digit. For the reduced data, we downsampled the
✷✽ ✂ ✷✽ images to ☎✹ ✂ ☎✹, giving an data dimension of
◆ ❂ ☎✹ ✂ ☎✹ ❂ ☎✾✻, and chose only the digits “3”, “8”,
and “9”. We gathered all the data together into a pool of 7000
samples per digit. Then, in each of ten random trials, we chose
an independent training set of 200 samples from the pool, and
kept the rest for testing. In each trial, the total number of
testing samples was 20324. For GMM and Gauss-input RBMs,
we used expanded data (see Section III-B).

B. Results

We trained an RBM separately on the data of each class
♠ using CD to obtain the RBM parameter ✄✆. Then, we
extracted the corresponding sufficient statistic, denoted by ③✆,
whos PDF ❫♣✭③✆❀❍✆✮ was modeled by a GMM. We then
applied formula (6) as the likelihood function, with ♣✭③❥✄✮

replaced by ❫♣✭③✆❀❍✆✮. The classification performance was
averaged over ten independent trials, each time selecting 200
training samples at random, and using the rest as test data.
In Figure 4, we show the performance as a function of ▼

for various RBM types and for GMM only. The GMM-only
classifier modeled the input data ① directly. On the plot, we see
the error in percent for GMM alone as a function of the number
of mixture components (plotted on the X axis as variable ▼ )
for diagonal covariance matrices and full covariance matrices.
We also see the performance of RBM/GMM for various RBM
types with the sufficient statistic modeled only using 2 GMM
modes. Plotted are TED-TED, Gauss-TED, and Gauss-Gauss
RBMs. For the Gauss-Gauss RBM, we show results with and
without the energy statistic. It is clear that the energy statistic
helps. In Figure 5, we see the performance as a function
of standard deviation floor ✌ for each Generative model on
Figure 4, at the optimum value of ▼ . To implement “standard
deviation floor”, we added the value ✌✞❫✛✞✐ to the ✟-th entry of
main diagonal of the GMM’s covariance matrices, where ❫✛✞✐
is the sample variance of data dimension ✟.

Fig. 4. Performance as a function of ✠ on R-MNIST.
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Fig. 5. R-MNIST performance as a function of standard deviation floor ✌.

It can be seen in these experiments that the RBM trained
on the input data, combined with GMM to estimate the
distribution of the sufficient statistic, is a viable PDF estimator
for constructing generative classifiers that can out-perform the
GMM alone.

V. CONCLUSIONS

In this paper, we have presented a means to compute the
visible data marginal of the RBM without integration. We did
this by finding the sufficient statistic of the RBM’s theoretical
density, then using PDF projection to compute the PDF of
the visible data. We compared the method with the theoretical
marginal obtained by analysis or numerical integration, and
they matched. Then we applied the method to classifying
handwritten characters using a reduced subset of MNIST and
it performed significantly better than GMM alone.

APPENDIX

A. The saddle point approximation for a linear function of
uniform RVs.

Let ③ ❂ ❚✭①✮ be some dimension-reducing transformation
and assume we need to compute ♣✭③❀❍✵✮ where ♣✭①❀❍✵✮

is known. The types of transformations ❚ and reference
hypotheses ❍✵ for which analytic expressions are available
are limited. For a broader class of statistics, the exact moment
generating function (MGF) is often known and can be inverted
using the saddle-point approximation (SPA) [8]. It should be
kept in mind that although the SPA is an “approximation”, the
accuracy is not degraded in the PDF tails and the result even
converges to the true value as ◆ becomes large and the feature
approaches Gaussian by Central Limit Theorem.

Let feature ③ ✷ ❘▼ . The moment-generating func-
tion for ♣✭③✮ is given by ❣�✭✕✮ ❂ ❊

✟
❡✁✂

✄
✕
☎
③
✆✝

for
✞ -dimensional Laplace transform variable ✕. Then, ③

is obtained by the inverse Laplace transform: ♣�✭③✮ ❂
✶

✠❥✡✙☛☞

✍

❈ ❡✁✂
✄
✎✕

☎
③
✆

❣�✭✕✮ ❞✕✏ where ✑ ❂
✒

✎✓✿ The

contour ✔ is parallel to the imaginary axis in each of the
✞ dimensions of ✕. The joint cumulant generating function
(CGF) is ❝�✭✕✮ ❂ ❧♦✖ ❣�✭✕✮✿ For a specified ③, the Saddle-

point is that real point ❫✕✭③✮ where all ✞ partial derivatives

satisfy
❅✗✘✠✕☛
❅✚✐

✛
✛
✛ ✜
✕

❂ ✢✣✏ ✓ ✤ ✥ ✤ ✞✿ The Saddlepoint

may be found iteratively using the recursion ✕♥✰✶ ❂ ✕♥ ✦

✧★✶
� ✭✕♥✮

✄
③ ✎ ✩✚

� ✭✕♥✮
✆
✏ where ✩✚

� ✭✕✮ is the gradient vector
of ❝�✭✕✮ w/r to ✕, and ✧�✭✪✮ is the ✞ ✫✞ matrix of second

partial derivatives ✧�✭✪✮
✬
❂

❤
❅✯✗✘✠✚☛
❅✚✱❅✚♠

✲

✿ Once the saddle-point

❫✕✭③✮ is found, the saddle-point approximation is given by

♣�✭③✮ ✳

❡✁✂

✴

❝�✭
❫✕✮ ✎ ❫✕

☎
③

✸

✭✹✺✮▼✻✡
❤

❞❡t

✼

✧�✭
❫✕✮

✽✲✶✻✡
✏ ❫✕ ❂ ❫✕✭③✮✿ (13)

Let ① be a set of ◆ independent uniform-distributed RV in
❬✾✏ ✓❪ Let ❆ be an ◆ -by-✞ full-rank matrix and let ③ be the
✞ ✫ ✓ feature vector ③ ❂ ❆☎①✿ When ① ✷ ❘❁ is uniformly
distributed, the CGF is given by

❝�✭✕✮ ❂

❁❳

♥❃✶

❧♦✖

❄

❇
❡✁✂

✼P▼
✣❃✶ ✪✣❉♥❋✣

✽

✎ ✓

P▼
✣❃✶ ✪✣❉♥❋✣

●

■ ✿

For conciseness, define ✇♥ ❂
P▼

✣❃✶ ✪✣❉♥❋✣✿ Then, ❝�✭✕✮ ❂
P❁

♥❃✶ ❧♦✖

✼
❏❑▲★✶

❖▲

✽

✏
❅✗✘✠✕☛
❅✚✐

❂
P❁

♥❃✶

✼
❏❑▲

❏❑▲★✶ ✎
✶
❖▲

✽

❉♥❋✣✏

and

◗✡❝�✭✕✮

◗✪✣◗✪❥
❂

❁❳

♥❃✶

❙
❯❖▲

❯❖▲ ✎ ✓
✎

✭❯❖▲✮✡

✭❯❖▲ ✎ ✓✮✡
✦

✓

✇✡
♥

❱

❉♥❋✣❉♥❋❥✿

From these expressions, we may find the saddle-point approx-
imation (13).
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