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Abstract—We propose a novel technique for the extraction
of one independent component from an instantaneous linear
complex-valued mixture of signals. The mixing model is opti-
mized in terms of the number of parameters that are necessary
to simultaneously estimate one column of the mixing matrix
and one row of the de-mixing matrix, which both correspond
to the desired source. The desired source is assumed to have a
non-Gaussian distribution, while the other sources are modeled,
for simplicity, as Gaussian-distributed, although in applications
the other sources can be arbitrary. We propose an algorithm
that can be interpreted as a blind self-steering Minimum-Power
Distortionless Response (MPDR) beamformer. The method is
compared with the popular Natural Gradient algorithm for gen-
eral Independent Component Analysis. Their performances are
comparable but the proposed method has a lower computational
complexity; in examples, it is about four times faster.

I. INTRODUCTION

Consider the following complex-valued instantaneous mix-
ture model that describes a multi-channel mixing problem with
one target signal within a frequency bin [1]. The model reads

x(t) = as(t) + y(t) or X = a s+Y (1)

where the former is a vector-symbolic description while the
latter describes a batch of data; t is a time or frame index
which will be omitted for brevity; x = [x1, . . . , xd]

T rep-
resents d observed signals on sensors; s represents a target
signal and a is the corresponding d × 1 steering vector;
y = [y1, . . . , yd]

T represents noise signals that are independent
of s. The upper-case bold letters such as X and Y will denote
matrices whose columns contain concrete samples of x and y,
respectively; let the number of samples be N where N � d;
s is the 1 × N row vector of samples of s. All signals are
assumed to have zero mean.

In array processing literature [2], an optimum extractor of
s is the Minimum Power Distortionless Response beamformer
(MPDR) defined trough

min
w

E[|wHx|2] w.r.t. wHa = 1, (2)
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where the output signal is wHx. The solution of (2) is

wMPDR =
C−1

x a

aHC−1
x a

, (3)

where Cx = E[xxH ] is the covariance of x; E[·] stands for the
expectation operator. The expression can be used in practice by
replacing Cx by its sample-based estimate Ĉx = XXH/N .
However, the steering vector a must be known.

Various models have been proposed to identify a from x,
see, e.g. [3]. Most of recent attempts come from Blind Source
Separation (BSS) based on Independent Component Analysis
(ICA) [4], [5]. In ICA, it is assumed that (1) can be written
as a determined mixture

x = Hu, (4)

where H = [aH2] is d × d regular, H2 is a d × (d − 1)
matrix, u = [s;u2] where u2 = [u2, . . . , ud]

T is a vector of
d− 1 independent signals. In other words, y is assumed to be
decomposable into d − 1 independent signals as y = H2u2.
A generalization to ICA is Multidimensional ICA (MICA) [6],
which enables the components of u2 to be dependent. Blind
Source Extraction (BSE) is a class of methods that aims to
extract one signal of specific properties (not necessarily an
independent signal); see, e.g., [7]. ICA, MICA and BSE are
bases of further extensions as is Independent Vector Analysis
(IVA) [8] or Joint BSS (JBSS) [9]; see also [10] for further
extensions and perspectives.

Since the role of s can be interchanged with any independent
component of y, a priori knowledge is needed in order to
separate the desired source. Typically, information is given
in the form of a rough estimate of a, e.g., based on an
approximate direction-of-arrival (DOA) of the target source
on the sensors [11]. An ICA (MICA) algorithm can be then
initialized so that it converges to the desired solution.

In this paper, we focus on this situation when an initial guess
for the steering vector is given, and the nearest independent
source should be found. ICA as well as MICA appear to be
too excessive for this goal, because they also aim to separate
y. Therefore, in Section II, we propose a novel mixing model
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where the separation of y is not the goal. We will refer to it
as to Independent Component Extraction (ICE)1.

The rest of the paper is organized as follows. In Section III,
an initialization-dependent algorithm for the extraction of a
nonGaussian target source is derived based on maximum
likelihood principle. While s is assumed to be nonGaussian,
y is modeled as a mixture of correlated Gaussian signals.
The algorithm is faster than the popular Natural Gradient
algorithm by Amari et al. [13], which is shown by simulations
in Section IV. Section V concludes the paper.

II. MIXING MODEL PARAMETRIZATION

A. Mixing and De-mixing Matrices

The model (1) involves the scaling ambiguity that the couple
(s,a) can be replaced by (αs, α−1a) for any α �= 0. Without
any loss of generality, we can cope with this problem by
putting a1, the first element of a, equal to one; let us denote2

a = [1; g]. (5)

This is equivalent to considering s as the signal of the target
source as it is received by the first sensor. In multi-microphone
systems, the elements of g are, after this normalization,
referred to as Relative Transfer Functions (RTFs); see [14].

The ICE model describes (1) as a determined mixture, so the
subspace spanned by [s;y] must have dimension d. In other
words, y is assumed to be coherent so that it can be fully
separated from x. Hence, y can be expressed as y = Qz
where Q is a d× (d− 1) matrix and z = [z1, . . . , zd−1].

Let the mixing and the de-mixing descriptions of (1) with
square matrices be, respectively,

x = Av and v = Wx, (6)

where v = [s; z]. The structure of the mixing matrix is
therefore A = [a, Q]. Let the de-mixing matrix be partitioned
as W = [wH ;B]. The role of w is the separating vector that
extracts s from x. By contrast, B extracts z while it blocks
out s, so its role is the same as that of “Blocking Matrix” in
array processors [2], [14]. This property is ensured whenever
B is orthogonal to a, so we put B = [g, −Id−1], by which
the definition of z is completed, i.e., z = By = Bx; we will
refer to z as to the background signals.

Since wHx = s, the vector w represents a distortionless
beamformer satisfying constraint

wHa = 1. (7)

By parameterizing the vector as wH = [β, hH ], it follows
from (5) and (7) that β = 1− hHg.

Now, by stating that WA = Id, the concrete parametrization
of the mixing and the de-mixing matrix, respectively, is

A = [a, Q] =

(
1 hH

g ghH − Id−1

)
, (8)

1At the time of submission of this paper, a similar idea appeared in [12],
however, for situations where the steering vector a is known in advance.
Otherwise, the idea is novel to the best of our knowledge.

2Throughout the paper, we use Matlab convention for matrix/vector con-
catenation, e.g., [1; g] = [1, gT ]T .

and
W =

(
wH

B

)
=

(
1− hHg hH

g −Id−1

)
. (9)

It should be emphasized that the ICE model is minimized for
the problem of separating s from x. Although we do not care
about the form in which y is separated from x, the extracted
counterpart of y, the background signal z, is fully specified.
The mixing model has only 2d− 2 parameters represented by
the elements of g and h.

This is in contrast with MICA, which is highly ambiguous
in that Q and z can be arbitrary but y = Qz. In ICA, the
elements of z should be independent, which is less ambiguous
as compared to MICA but still ambiguous and limiting as
compared to ICE.

B. Orthogonal Constraint

Some ICA and MICA algorithms impose orthogonal con-
straint (OG) on the separated signals [15]. The separated
signal subspaces are constrained to be orthogonal to ensure
their uncorrelatedness. The constraint reduces the number of
ambiguous parameters in the mixing model.

Let W denote a de-mixing matrix estimate and

V̂ =

(
ŝ

Ẑ

)
= WX (10)

be concrete samples of the estimated de-mixed signals. The
OG requires that

ŝ · ẐH/N = wHĈxB
H = 0, (11)

where Ĉx = XXH/N is the sample-based estimate of
Cx. To simplify the notation, we do not explicitly write the
dependence of B, w, a, etc. on g and h.

Once OG is applied, there is a coupling between g and h,
which reduces the number parameters from 2d − 2 to d − 1.
Let the free variable be g. It can be shown that g and h are
coupled through

wOG =
Ĉ−1

x a

aHĈ−1
x a

. (12)

By comparing (12) with (3), wOG can be interpreted as an
approximate MPDR beamformer where Cx is replaced by Ĉx,
and a is replaced by its current estimate given by [1;g].

III. PROPOSED ALGORITHM

In this paper, we will focus on ICE constrained by the OG.
The task can be formulated as follows.

Definition 1. The goal of the orthogonally constrained ICE
is to find a, or, equivalently g, such that ŝ = wH

OGX is
as independent of its orthogonal complement Ẑ = BX as
possible.

There are several statistical models in ICA relying on one
or more signals’ properties such as nonGaussianity, nonsta-
tionarity or nonwhiteness [16]. In this paper, we focus on the
nonGaussianity-based model where all signals are modeled as
i.i.d. sequences. We will constrain to a particular case where
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1) the target signal s is drawn from a nonGaussian distri-
bution, while

2) the background signals z are circularly-symmetric Gaus-
sian.

The latter assumption is not that restrictive as it might seem. In
the ICE de-mixing model, z = Bx correspond to “mixed” and
correlated signals (up to very special cases). Due to the Central
Limit Theorem, mixed signals tend to be more Gaussian
[17]. Moreover, the multivariate Gaussian distribution is the
simplest statistical model of correlated signals.

A. Maximum Likelihood Principle

Let ps(ξ1) and pz(ξ2) denote the probability density func-
tions of s and z, respectively; ξ1 and ξ2 denote free variables
of appropriate dimensions. Using the independence assump-
tion, the joint pdf of s and z is

ps(ξ) = ps(ξ1) · pz(ξ2), (13)

where ξ = [ξ1; ξ2], and pz(ξ2) ∼ CN (0,Cz). From (6) and
(9), the joint pdf of x is

px(ξ) = ps(w
Hξ) · pz(Bξ) · detW︸ ︷︷ ︸

=1

(14)

= ps((1− hHg)ξ1 + hHξ2) · pz(ξ1g − ξ2). (15)

For the measured signals X, the log-likelihood function, as a
function of the model parameters g and h, reads

L(g,h) = 1

N
log

N∏
i=1

px(g,h|xi) (16)

=
1

N

N∑
i=1

(
log ps(w

Hxi) + log pz(Bxi)
)

(17)

=
1

N

N∑
i=1

(
log ps(w

Hxi)− xH
i BHC−1

z Bxi

)
+ C,

(18)

where xi denotes the ith column of X, that is, the ith sample
of x, and C is a constant independent of g and h. By applying
the OG and replacing Cz by Ĉz = ẐẐH/N , we introduce a
contrast function for g as

C(g) = 1

N

N∑
i=1

(
log ps(w

H
OGxi)− xH

i BHĈ−1
z Bxi

)
. (19)

The gradient of (19) with respect to gH is

∂C(g)
∂gH

=
1

N

N∑
i=1

(
λaE

{
Ĉ−1

x

(
2�{ψs(ŝi)(ŝi)}a

− ψs(ŝi)xi

)}− x1iĈ
−1
z Bxi

)
, (20)

where ŝi = wH
OGxi, λa = (aHĈ−1

x a)−1, E{·} eliminates the
first element of vector-valued argument, �{·} is the real part
of the argument, x1i is the first element of xi, and

ψs(ξ1) = −∂ log ps(ξ1)

∂ξ1
(21)

Algorithm 1: Gradient ascent algorithm for OG con-
strained Gaussian background ICE: OGICE
Input: X, gini, μ, tol
Output: a,w

1 Ĉx = XXH/N ;
2 g = gini;
3 repeat
4 a ← [1;g]; /* according to (5) */

5 λa ← (aHĈ−1
x a)−1;

6 w ← λaĈ
−1
x a; /* OG constraint (12) */

7 ŝ ← wHX;
8 q ← φ(ŝ)/(ŝφ(ŝ)H/N); /* to fulfil (26) */

9 Δ ← h− E{λaĈ
−1
x XqH/N}; /* by (27) */

10 g ← g + μΔ; /* gradient ascent */
11 until ‖Δ‖ < tol;

is the score function corresponding to ps(·). The last term in
(20) can be simplified according to

1

N

N∑
i=1

x1iĈ
−1
z Bxi = Ĉ−1

z ẐXHe1/N = (22)

= Ĉ−1
z Ẑ

[
ŝH , ẐH

]
AHe1/N = (23)

=
[
Ĉ−1

z ẐŝH︸︷︷︸
=0

/N, Id−1

]
AHe1 = h, (24)

where e1 denotes the first column of Id, and ŝ = wH
OGX. The

fact that ẐŝH = 0 follows from the OG (11), and the last
equation follows from (8).

B. Gradient Ascent Algorithm

In practice, the pdf of the target signal is not known, so,
in ICA, the score function (21) is replaced by an appropriate
nonlinearity φ(·). For ICE, an additional requirement is that φ
satisfies that

E[sφ(s)] = 1. (25)

It could be easily verified that for φ = ψs, this condition is
satisfied. By inspecting (20) for N → +∞, it is seen that
the gradient is zero when a is the true steering vector, so the
optimum solution is the extreme of the contrast function. To
preserve this key property even when φ �= ψs, the condition
(25) must be fulfilled.

Since (25) cannot be ensured without knowing ps, we
propose to normalize the selected nonlinearity φ so that the
sample-based moment

ŝφ(ŝ)H/N = 1, (26)

where the scalar function φ is applied element-wise.
Now, using (24) and (26) and the fact that E{λaĈ

−1
x a} = h,

the gradient (20) simplifies to

∂C
∂gH

= h− E{λaĈ
−1
x Xφ(ŝ)H/N}. (27)

Based on this, we propose the gradient ascent algorithm
described in Algorithm 1, which will be referred to as OGICE.
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The method starts from an initial guess gini and performs small
steps in the direction of the gradient (27). The length of the
step is controlled through a positive constant μ. In each step,
the nonlinearity φ is normalized to satisfy (26). The algorithm
stops when the norm of the gradient is smaller than a selected
tolerance.

C. OGICE vs. (Natural) Gradient-Based ICA

Consider a special case where Ĉx = Id (which can be
achieved by de-correlating the input data X as in Algorithm 2).
Then, wOG = a/‖a‖2 and (27) can be written in the form

‖a‖2 ∂C
∂gH

= g − E{Xφ(ŝ)H/N}. (28)

This reveals an interesting similarity between OGICE and the
method by Bell and Sejnowski [18] for the classical ICA
formulation, whose popular improvement is known as the
Natural Gradient algorithm [13], [19]. The update rule of [18]
for the (ICA) de-mixing matrix is

ΔW ← W−H − φ(WHX)XH/N. (29)

After the conjugate transpose and by denoting W−1 = A, the
update rule is

ΔWH ← A−Xφ(WHX)H/N. (30)

Now, the right-hand side of (28) corresponds to any column
of the right-hand side of (30). Nevertheless, there are principal
differences between the related algorithms. In (30), the update
of any row of W is influenced by the other rows (the
estimation of one component influences that of the others),
because A = W−1. Next, (28) is used under the condition
(26) and when the data are de-correlated, which is not required
by the ICA algorithm using (30).

Algorithm 2: OGICE with preprocessing
Input: X, gini, μ, tol
Output: a,w

1 Ĉx = XXH/N ; D = Ĉ
−1/2
x ;

2 X ← DX; /* de-correlation */
3 aini ← D[1;gini]; α = (aini)1;
4 g ← E{aini/α};
5 repeat
6 a ← [1;g];
7 w ← a/‖a‖2;
8 ŝ ← wHX;
9 q ← φ(ŝ)/(ŝφ(ŝ)H/N);

10 Δ ← E{a−XqH/N}/‖a‖2;
11 g ← g + μΔ;
12 until ‖Δ‖ < tol;
13 a ← αD−1a; w ← α−1Dw;
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Fig. 1. Average computational time per iteration for varying d and N .

IV. EXPERIMENTAL RESULTS

In simulations, we compared OGICE with the popular
Natural Gradient (NG) algorithm from [13]. Both methods
were initialized using the true steering vector perturbed by
random errors taken from CN (0, σ2). In NG, the initial de-
mixing matrix consists of the first row equal to (12) while
the other rows are selected as in (9). In both methods, two
nonlinearities φ(·) were tested. The first is tanh(·), which was
employed by many ICA methods [4]. The second nonlinearity
is sign(x) = x/|x|, which corresponds to the score function
of the circularly-symmetric complex Laplacian distribution. To
compare, we consider also the performance of the approximate
MPDR beamformer (using sample-based covariance matrix)
(12) where a is either equal to the true value (oracle) or to its
perturbed value (initial).

The target signal was generated from the latter distribution
with variance one. The (interference) signals were generated
as circularly-symmetric Gaussian CN (0, Id−1). The elements
of the mixing matrix A were generated independently from
CN (1, 1/4) (the mean value is one to simulate similarly
distributed signals over the sensors); we set (A)11 = 1.

The signals were mixed according to X = AS. This
corresponds to (1) where a is equal to the first row of A
while the covariance of the noise signals y is Cy = A2A

H
2 ,

where A2 consists of columns 2, . . . , d of A. In each trial, the
signals were generated, mixed and separated by the algorithms.
The separated signal was evaluated in terms of Signal-to-
Interference Ratio (SIR). Fig. 2 shows the SIR averaged over
103 trials, respectively, for varying d, N , and σ when the other
parameters were fixed to d = 10, N = 103 and σ = 0.1;
μ = 0.01 was used in OGICE as well as in NG.

The influence of the nonlinearity φ(·) on SIR is significant.
OGICE as well as NG yields better SIR when φ(·) corre-
sponds to the true score function sign(·) of the target signal
distribution. NG appears to be more sensitive to the choice of
φ(·). While it achieves almost superior results with sign(·),
it performs worst with tanh(·). The fact that the approximate
MPDR with oracle steering vector can be outperformed by
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Fig. 2. Average Signal-to-Interference Ratio over 1000 trials, respectively, for varying d, N , and σ.

OGICE as well as by NG (with sign(·)) points to the appealing
potential of the blind estimators.

The dependence of SIR on N reveals that the accuracy
of OGICE is limited when N → +∞. This is well known
phenomenon caused by the orthogonal constraint [15], [20].
NG does not apply the constraint, so its accuracy grows faster
with N . On the other hand, the results for N < 103 slightly
promote OGICE prior to NG.

The results for varying σ reveal the radius of the region
of convergence where the initial value leads to the separation
of the desired signal (without random permutation in case of
NG). Interestingly, NG appears to be robust in this example
with sign(·) but less robust than OGICE with tanh(·).

Last but not least, Fig. 1 shows the average computational
time per one iteration as functions of d and N . In these
examples, OGICE is approximately four times faster than NG
(performed in Matlab on a PC with 4-core 2.7 GHz processor,
8 GB RAM). The algorithms need approximately the same
number of iterations to converge.

V. CONCLUSIONS

The novel mixing model of ICE has been introduced,
which contains the minimum number of parameters needed
to handle the separation of one source of interest. A novel
OG-constrained algorithm, OGICE, was proposed based on
the mixing model. The method is simpler than NG as it does
not aim to decompose the rest of the mixture into independent
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