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Abstract—Two new rank properties for time difference of
arrival (TDOA) measurements in two-dimensional space are
reported in this paper. On the basis of these rank properties,
we propose a class of algorithms to refine TDOAs from their
observations. Since only the singular value decomposition (SVD)
technique is used, these proposed algorithms are very simple.
Simulative experiments show that the accuracy of TDOA es-
timations is significantly improved using the proposed refining
algorithms. Moreover, their ability to improve TDOA-based joint
source and sensor localization is also proven by simulative
experiments.

Index Terms—Time Difference of Arrival, Time of Arrival,
Expansion of Time Difference of Arrival

I. INTRODUCTION

Source localization [1], [2], [3], [4] and joint source and

sensor localization [5], [6], [7], [8] based on time difference
of arrival (TDOA) measurements are among the most fun-

damental problems in signal processing. They have received

significant attention during the last three decades because of

their wide range of applications. Most of the methods for

TDOA-based localization are very sensitive to the accuracy

of the TDOA measurements (see [2], [6], [7]). Thus, more

accurate TDOA measurements are required.

Typically, TDOA measurements are given by a set of all

the TDOA elements, which are obtained from all triples

comprising of any two sensors and one source. Given a triple

of two sensors and one source, when the source emits a signal

and the two sensors receive this signal, the TDOA element

of this triple is determined by measuring the peak of the

generalized cross-correlation of the two received signals. To

improve the accuracy of TDOA measurements, the traditional

approach has been to improve the accuracy of estimation

of TDOA elements. Another approach has been to use the

algebraic properties of TDOAs. In this paper, we focus on

the second approach, that is, we find some properties of

TDOAs such that TDOA measurements can be refined using

the estimated TDOA elements and these properties.

Recently, Velasco et al. [9] proposed a new method of

refining TDOA measurements based on the rank and the

special singular-value properties of the matrix generated by

all TDOA-elements from triples with the same source. This

method is based on the redundancy among these TDOA-

elements. Concretely, the information of the N(N − 1)/2

TDOA-elements generated by N sensors and a single source is

equivalent to that of some N−1 appropriately selected TDOA

elements. Hence, the process of transferring the information

from all N(N − 1)/2 TDOA-elements to the equivalent

information of N − 1 TDOA-elements can help reduce the

errors in TDOA measurements. Note that the roles of the

sources are independent in the process given in [9] for re-

fining TDOAs. Interestingly, we found that the information of

the remaining N − 1 TDOA-elements for each source also

includes redundancy if we combine the information for all

sources. Propositions 1 and 2 in the next section describe this

redundancy. These results are based on the rank property of

the times of arrival (TOAs) which were introduced in [10]

and studied carefully in [11]. The rank properties given by

Propositions 1 and 2 are applied to R
2 but they can be easily

generalized to R
3. However, since the proofs of Propositions

1 and 2 in R
3 have not yet been found, here we only focus

on R
2.

Algorithms for our proposed method of refining TDOA

measurements are presented in Section III. These algorithms

are evaluated by simulative experiments by considering the

differences between the results of refinement and the ground

truth of TDOA measurements. In addition, we also evaluate

these algorithms in terms of TDOA-based joint source and

sensor localization via the algorithm given by [12]. The

evaluations described in Section IV show that our proposed

method significantly refines for TDOA measurements.

II. TDOA-DISTANCE MATRIX AND RANK PROPERTIES

The focus of this paper, namely, the TDOA-distance matrix,

is defined as follows.

Definition 1. A real matrix Γ =
(
τmn

)
M×(N−1)

is called a
TDOA-distance matrix in two dimensions (2D) if there exist
M points x1, . . . ,xM and N points y1, . . . ,yN in R

2 such
that for all 1 ≤ m ≤ M , 1 ≤ n ≤ N − 1,

τmn = ‖xm − yn+1‖2 − ‖xm − y1‖2, (1)

where ‖ · ‖2 denotes the Euclidean distance.

In the field of signal processing, if xm is the position of

the mth source, y1 and yn+1 are the positions of the first and

(n+1)th sensors, respectively, and moreover, if the velocity of
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the signal is known, the element τmn of the TDOA-distance

matrix Γ is determined by the TDOA element of the triple

{y1,yn+1,xm}. Since in most applications of localization,

the velocity of the signal can be found, the TDOA-distance

matrix is used to study TDOA measurements.

Rank properties are presented in a new matrix, named an

expansion of the TDOA-distance matrix, which is given by the

following definition.

Definition 2. Assuming Γ =
(
τmn

)
M×(N−1)

to be a TDOA-
distance matrix, an expansion of Γ is given by

Γ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ11 . . . τ1,N−1

...
. . .

...
τM1 . . . τM,N−1

τ221 − τ211 . . . τ22,N−1 − τ21,N−1

τ231 − τ211 . . . τ23,N−1 − τ21,N−1

...
. . .

...
τ2M1 − τ2M−1,1 . . . τ2M,N−1 − τ2M−1,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

The size of Γ̃ is 1
2M(M + 1)× (N − 1).

Note that the first M rows of the expansion Γ̃ give the

TDOA-distance matrix Γ. Thus, a refinement of Γ̃ can be a

refinement of Γ. The following two propositions present two

rank properties of Γ̃, from which we can derive some ways

of refining Γ̃.

Proposition 1. If Γ =
(
τmn

)
M×(N−1)

is a TDOA-distance
matrix in 2D, then for all 1 ≤ m1 < m2 < m3 < m4 ≤ M ,

rank

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τm1,1 . . . τm1,N−1

τm2,1 . . . τm2,N−1

τm3,1 . . . τm3,N−1

τm4,1 . . . τm4,N−1

τ2m2,1 − τ2m1,1 . . . τ2m2,N−1 − τ2m1,N−1

τ2m3,1 − τ2m1,1 . . . τ2m3,N−1 − τ2m1,N−1

τ2m4,1 − τ2m1,1 . . . τ2m4,N−1 − τ2m1,N−1

τ2m3,1 − τ2m2,1 . . . τ2m3,N−1 − τ2m2,N−1

τ2m4,1 − τ2m2,1 . . . τ2m4,N−1 − τ2m2,N−1

τ2m4,1 − τ2m3,1 . . . τ2m4,N−1 − τ2m3,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 6. (3)

Proof. Assuming that Γ is a TDOA-distance matrix in 2D,

there exist M points x1, . . . ,xM and N points y1, . . . ,yN in

R
2 such that τmn = ‖xm − yn+1‖2 − ‖xm − y1‖2 for all

m,n. Let us denote dmn = ‖xm−yn‖2 as the time-of-arrival
(TOA) distance between xm and yn and D = (dmn) as the

TOA-distance matrix. For a TOA-distance matrix with a low-
rank property (see [10]), the rank of

(
d2mn − d2m1 − d21n +

d211
)
(M−1)×(N−1)

is at most two. Let H be the matrix given

in (3) and K be the matrix comprising only columns n1, n2

and n3 of H. Let Ki,j,h be the matrix comprising only rows

i, j and h of K. On the basis of the low-rank property, in our

previous work [12] we showed that for all 1 ≤ m1 < m2 <
m3 < m4 ≤ M and 1 ≤ n1 < n2 < n3 ≤ N − 1,

− 8
∣∣K1,2,3

∣∣z1z2z3 + 8
∣∣K1,2,4

∣∣z1z2z4
− 8

∣∣K1,3,4

∣∣z1z3z4 + 8
∣∣K2,3,4

∣∣z2z3z4
+ 4

∣∣K1,2,10

∣∣z1z2 − 4
∣∣K1,3,9

∣∣z1z3 + 4
∣∣K1,4,8

∣∣z1z4
+ 4

∣∣K2,3,7

∣∣z2z3 − 4
∣∣K2,4,6

∣∣z2z4 + 4
∣∣K3,4,5

∣∣z3z4
− 2

∣∣K1,6,7

∣∣z1 + 2
∣∣K1,5,7

∣∣z1 − 2
∣∣K1,5,6

∣∣z1
+ 2

∣∣K2,6,7

∣∣z2 − 2
∣∣K3,5,7

∣∣z3 + 2
∣∣K4,5,6

∣∣z4
+

∣∣K5,6,7

∣∣ = 0,

(4)

where z1, z2, z3, z4 are dm11, dm21, dm31, dm41, respectively,

and | · | denotes the determinant of a matrix. Note

that −8
∣∣K1,2,3

∣∣, 8
∣∣K1,2,4

∣∣, . . . , ∣∣K5,6,7

∣∣ are the elements of

Cm1m2m3(n1, n2, n3) given by Table 1 in [12] when m1,

m2, m3, m4 are replaced by 1,m1 + 1,m2 + 1,m3 + 1,

respectively. Interestingly, equation (4) can be expressed by

the matrix formula given by (5). Because of the last three

rows of the matrix given in (5), the last three row vectors of

this matrix are linearly independent of the others. Assuming

that z1, z2, z3, z4 are positive, (5) implies that∣∣∣∣∣∣∣∣∣∣∣∣∣
K1,2,3,4,5,6,7

1
2z1

0 0 0

0 1
2z2

0 0

0 0 1
2z3

0

0 0 0 1
2z4

1 −1 0 0
1 0 −1 0
1 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (6)

and, therefore,

rank

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
H1,2,3,4,5,6,7

1
2z1

0 0 0

0 1
2z2

0 0

0 0 1
2z3

0

0 0 0 1
2z4

1 −1 0 0
1 0 −1 0
1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≤ 6. (7)

Thus, the seven vectors of H1,2,3,4,5,6,7 are linearly dependent.

Similar conclusions can be derived for any other seven vectors

of H. Hence, rank(H) ≤ 6 and Proposition 1 is proven.

Proposition 2. If Γ is an M×(N−1) TDOA-distance matrix
(M ≥ 4), then

rank(Γ̃) ≤ M + 2, (8)

where Γ̃ is an expansion of Γ.

Proof. Proposition 1 implies that Proposition 2 is correct when

M = 4. Using the induction method, the proof of Proposition

2 is complete if we assume that Proposition 2 is correct for

M − 1 (M > 4) and prove that it is also correct for M .

Let us denote vectors of order 1 for the first M rows of Γ̃ as

(τm1, . . . , τm,N−1) (abbreviated to Γ̃m) and vectors of order 2
for the last M(M−1)/2 rows as (τ2mi1−τ2mj1, . . . , τ

2
mi,N−1−

τ2mj ,N−1) (abbreviated to Γ̃mimj
). A row is said to “contain”

an index m if it is Γ̃m, Γ̃m� or Γ̃�m.

We assume that there exist M+3 rows of Γ̃ that are linearly

independent. For all indexes m, these M+3 rows should have

at least two rows that contain the index m. Thus, if there exists

an index m such that only one of these M+3 rows contains it,
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2z1τm1n1 2z1τm1n2 2z1τm1n3 1 0 0 0 0 0 0

2z2τm2n1 2z2τm2n2 2z2τm2n3 0 1 0 0 0 0 0

2z3τm3n1 2z3τm3n2 2z3τm3n3 0 0 1 0 0 0 0

2z4τm4n1 2z4τm4n2 2z4τm4n3 0 0 0 1 0 0 0

τ2
m2n1

− τ2
m1n1

τ2
m2n2

− τ2
m1n2

τ2
m2n3

− τ2
m1n3

1 −1 0 0 0 0 0

τ2
m3n1

− τ2
m1n1

τ2
m3n2

− τ2
m1n2

τ2
m3n3

− τ2
m1n3

1 0 −1 0 0 0 0

τ2
m4n1

− τ2
m1n1

τ2
m4n2

− τ2
m1n2

τ2
m4n3

− τ2
m1n3

1 0 0 −1 0 0 0

τ2
m3n1

− τ2
m2n1

τ2
m3n2

− τ2
m2n2

τ2
m3n3

− τ2
m2n3

0 0 0 0 1 0 0

τ2
m4n1

− τ2
m2n1

τ2
m4n2

− τ2
m2n2

τ2
m4n3

− τ2
m2n3

0 0 0 0 0 1 0

τ2
m4n1

− τ2
m3n1

τ2
m4n2

− τ2
m3n2

τ2
m4n3

− τ2
m3n3

0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (5)

the M + 2 remaining rows will contain the M − 1 remaining

indexes. And hence by the induction method, these M + 2
rows are linearly dependent, resulting in a contradiction.

In other words, if the group of all vectors of order 2

in these M + 3 rows has the sequence of rows Γ̃m1m2
,

Γ̃m2m3
, . . . , Γ̃m1m2

, Γ̃mi−1mi
, Γ̃m1mi

for any indexes m1,

m2, . . . ,mi, these vectors of order 2 are linearly depen-

dent, and thus these M + 3 vectors are not linearly in-

dependent. However, the fact that all indexes m appear at

least twice in the M + 3 rows implies that (i) there al-

ways exists a sequence of indexes m1,m2, . . . ,mi such that

Γ̃m1m2
, Γ̃m2m3

, . . . , Γ̃m1m2
, Γ̃mi−1mi

, Γ̃m1mi
are in these

M + 3 rows or (ii) there exists a sequence of indexes

m1,m2,m3,m4 such that Γ̃m1 , Γ̃m2 , Γ̃m3 , Γ̃m4 , Γ̃m2m1 ,

Γ̃m3m1
are in these M + 3 rows. In both cases, these M + 3

rows are linearly dependent. Therefore, the assumption that

there exist M+3 linearly independent rows is incorrect. Thus,

rank(Γ̃) ≤ M + 2.

III. REFINEMENT OF TDOA-DISTANCE MATRIX

In this section, we discuss how to refine a TDOA-distance

matrix from its noisy observation. Given a TDOA-distance

matrix Γ and its observation ΓNo, i.e.,

ΓNo = Γ+ Noises, (9)

a refinement of the TDOA-distance matrix is defined as finding

a new matrix ΓRe such that (i) ‖ΓRe − Γ‖F < ‖ΓNo − Γ‖F ,

where ‖ · ‖F denotes the Frobenius norm, (ii) ΓRe satisfies

some properties of Γ and (iii) the difference ‖ΓRe − Γ‖F is

as small as possible.

On the basis of the rank properties given by Propositions 1

and 2, we propose a class of algorithms for a refinement of

the TDOA-distance matrix as follows.

Algorithm: Refinement of TDOA-distance matrix

Input: ΓNo - An observed TDOA-distance matrix.

κ - number of iterations.

Implementation:
1. M is the initial size of ΓNo.

2. Γ̃No is an expansion of ΓNo given by Definition 2.

3. Using singular value decomposition (SVD), determine

Γ̃◦ by extracting the M +2 largest singular values of Γ̃No.

(based on Proposition 2)

4. For k = 1, 2, . . . , κ

For all indexes m1,m2,m3,m4

a. K ← [
Γ̃◦
m1

; Γ̃◦
m2

; Γ̃◦
m3

; Γ̃◦
m4

; Γ̃◦
m1m2

; . . .

Γ̃◦
m1m3

; Γ̃◦
m1m4

; Γ̃◦
m2m3

; Γ̃◦
m2m4

; Γ̃◦
m3m4

]
(a matrix with ten rows)

b. Using SVD, determine K◦ by extracting the six

largest singular values of K.

(based on Proposition 1)

c. Γ̃◦
m1

, Γ̃◦
m2

, . . . , Γ̃◦
m2m4

, Γ̃◦
m3m4

are refined by

K◦
1,K

◦
2, . . . ,K

◦
9,K

◦
10 (rows of K◦), respectively.

5. Repeat step 3 with Γ̃No replaced by Γ̃◦.

(based on Proposition 2)

6. ΓRe is the first M rows of Γ̃◦.

Output: ΓRe - A refined TDOA-distance matrix.

In this paper, we consider the proposed algorithm corre-

sponding to κ = 0, 1, 3, 10, 50 and 200 which are denoted by

Alg0, Alg1, Alg3, Alg10, Alg50 and Alg200, respectively. Alg0
evaluates the contribution of Proposition 2, while Alg1,Alg3,

Alg10, Alg50 and Alg200 evaluate the contribution of both

Propositions 1 and 2 in refining the TDOA-distance matrix.

Moreover, the larger the value of κ, the greater the contribution

of Proposition 1.

IV. EVALUATION

A. Refinement of TDOA-distance matrix

The proposed algorithms are evaluated by simulative exper-

iments, which are introduced as follows. The ground truth of

an M × (N − 1) TDOA-distance matrix Γ is generated by M
points x1, . . . ,xM and N points y1, . . . ,yN , which are chosen

randomly and uniformly in a virtual square of size 5 × 5 m

and Definition 1. The observed TDOA-distance matrix is the

original TDOA-distance matrix corrupted by i.i.d. Gaussian
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Fig. 1. Evaluation of different methods of refining TDOA-distance matrix for various values of M and N in terms of means of RMSEs given by (10).
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Fig. 2. Evaluation of different methods of TDOA-based joint source and sensor localization for various values of M and N in terms of means of RMSEs
given by (11).

noises, i.e., ΓNo = Γ+N (0, σ2IM(N−1)), where IM(N−1) is

the identity matrix of size M(N − 1) and N (0, σ2IM(N−1))
denotes an (M,N − 1) Gaussian matrix with zero mean and

covariance σ2IM(N−1). Some refining algorithms are applied

to refine the observed TDOA-distance matrix. The root-mean-
square errors (RMSEs) of all the elements of the original

TDOA-distance matrix,

ERef(ΓRe) =

[
1

M(N − 1)

M∑
m=1

N−1∑
n=1

(
τ (Re)
mn − τmn

)2] 1
2

, (10)

are used to evaluate the refinements, where ΓRe is the refined

TDOA-distance matrix, and τmn and τRe
mn are the (m,n)th

elements of the original and refined TDOA-distance matrices,

respectively.

Figure 1 presents the means of the RMSEs of 1000 inde-

pendent simulative experiments given by (10). The RMSEs

are computed for the observation ΓNo and the six refinements

given by Alg0, Alg1, Alg3, Alg10, Alg50 and Alg200. Three

different levels of Gaussian noise, σ = 1, 2 and 5 cm, are

assumed. The results in Figure 1 show that the proposed

methods are effective for refining the TDOA-distance matrix

with the assumption of i.i.d. Gaussian noises, especially when

M and N are large. Moreover, it appears that the larger the

value of parameter κ, the more effective the proposed methods.

Thus, not only Proposition 2 but also Proposition 1 contributes

to the refinement of the TDOA-distance matrix.

B. TDOA-based joint source and sensor localization

The most common application of TDOA measurements (or

the TDOA-distance matrix) is localization. In this section,

we study how the refinement of the TDOA-distance matrix

affects the TDOA-based joint source and sensor localization
introduced in [6], [12] using the proposed methods Alg0, Alg1,

Alg3, Alg10, Alg50 and Alg200. We apply the algorithm for

TDOA-based joint source and sensor localization given in

[12] to the observed and refined TDOA-distance matrices. The

estimations of positions from the above simulative experiments

are compared with the ground-truth positions, x1, . . . ,xM and

y1, . . . ,yN , in terms of the following RMSE:

ELoc

({xest
1 , . . . ,xest

M ,yest
1 , . . . ,yest

N })
=

[
1

M

M∑
m=1

∥∥xest
m − xm

∥∥2
2
+

1

N

N∑
n=1

∥∥yest
n − yn

∥∥2
2

] 1
2

,
(11)

where xest
m and yest

n are the estimated positions.

Figure 2 presents the means of the RMSEs of 200 inde-

pendent simulative experiments given by (11). The same three

different levels of Gaussian noise, σ = 1, 2 and 5 cm, are

also used in this experiment. The results in Figure 2 show

that the accuracy of localization is significantly improved

from that obtained by the proposed methods. For example,

when the standard deviation of Gaussian noise is σ = 1
cm, the mean of the RMSEs between the estimated positions

and the ground-truth positions decreases from 100.9 cm for

localization without refinement to 48.0 cm for localization

with Alg200 when M = 6 and N = 10, and from 65.1 cm

for localization without refinement to 5.4 cm for localization

with Alg200 when M = 12 and N = 25.
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V. CONCLUSION

In this paper, we reported two newly found rank properties

for the expansion of TDOA-distance matrices. By performing

a factorization to satisfy the rank properties, we proposed some

algorithms to refine the TDOAs from their observations. These

refining algorithms significantly improve the accuracy of both

TDOA estimation and TDOA-based joint source and sensor

localization. A limitation of this paper is that we have not

determined the optimal value of κ, which will be examined

in the near future. Extending the two rank properties to R
3 is

also planned as future work.
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