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Abstract—In underwater acoustics, inversion tech-
niques, also called "Matched Field" processing, remain
the best methods for locating acoustic sources. But this
is without counting on the environmental parameter
fluctuations that lead to injurious coherence loss.
We have shown in a previous work that a sub-antenna

approach could be well suited to deal with such coher-
ence loss, however at the expense of a lower resolution.
In this paper, we propose to solve this drawback by
considering sparse priors.
In the experimental part of this paper, by using

numerical simulations of plane waves subject to coher-
ence loss, we demonstrate that the proposed method
not only outperforms a classical beamformer in terms
of source localization performance, but also, that it
improves the antenna resolution.

I. Introduction
In underwater acoustics, the Conventional Beamforming

(CB) [1] is the most popular method for assessing a source
position. In order to improve its power resolution, so-called
“high-resolution” techniques have then been proposed,
distinguishing by the a priori information they consider
on the nature and/or the number of sources. Among them,
we can mention the well-known Minimum Variance Distor-
tionless Response (MVDR) beamformer [2], the MUltiple
SIgnal Classification (MUSIC) beamformer [3] and, more
recently, sparse techniques [4].
In this latter context, the most common methods prob-

ably remain the greedy algorithms, including Orthogo-
nal Matching Pursuit (OMP) [5] or Simultaneous OMP
(SOMP) [6] when considering multiple measurements .
In underwater acoustics, we can also mention the use
of convex-relaxation based algorithms, such as the Least
Absolute Shrinkage and Selection Operator (LASSO) [4]
or the Simultaneous LASSO (SLASSO) when considering
multiple measurements (snapshots) [7]. All these latter
techniques offer a high resolution, but are intrinsically
not designed to be robust to random environmental fluc-
tuations such as internal waves or sound speed spatio-
temporal dynamics. These fluctuations lead in practice to
a not predictable coherence loss of the measured pressured
field. Consequently, mislead by a wrong physical model,
inversion techniques fail in recovering the source positions.
Flatté et. al. demonstrate in [8] that the coherence loss

can be interpreted as a multiplicative noise taking into

account the statistical correlations between the antenna
sensors. Following this assumption, we propose here a
method that adapts the sparse techniques to fluctuating
environments.
Formally, the paper investigates a combination of a

sub-antenna approach [9], [10] with sparse techniques [4],
[7]. On the one hand, sub-antenna techniques are well
suited to deal with coherence loss, but at the expense of
a resolution loss. On the other hand, sparse techniques
alone are not designed to deal with loss of coherence,
but lead to higher resolution than a simple beamformer
approach. From the combination of these two approaches,
we expect an improvement of both the source localization
performance and the power resolution.
In this paper, we consider monochromatic sources emit-

ting the same continuous signal. A discrete Fourier trans-
form is used to represent the received signal at the consid-
ered frequency. Then, from an underwater antenna array
measuring a complex value at each antenna sensor, we try
to assess the Direction Of Arrival (DOA) of the source
signals.
As a proof of concept, we propose in section V numerical

simulations of far-field sources (leading to plane waves at
the receiving antenna). This restriction is without loss
of generality of the proposed approach. The methods,
called Sub-Antenna OMP (SA-OMP) and Sub-Antenna
SOMP (SA-SOMP), are compared with CB, an OMP-
based beamformer and a SOMP-based beamformer.
In the two next sections II and III, we will respectively

present the sparse techniques considered in this paper
in the context of coherent noise and their extension to
coherence loss.

II. Sparse processing for coherent model

Let Y ∈ CM×T be the captured signals, where M
denotes the number of sensors in the array and T denotes
the number of snapshots. The signal Y can be expressed
as a linear combination of atoms:

Y = AX + B, (1)

where A ∈ CM×P denotes a set of P elementary signals
also called “replica” in the field of inversion, X ∈ CP×T
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stands for the source signal and B ∈ CM×T a random
white noise. We aim at finding the source signal X.

Setting Y = [y1, . . . ,yT ] and X = [x1, . . . ,xT ], an
immediate application of Orthogonal Matching Pursuit
(OMP) is formulated as follows:

∀t ∈ {1, . . . , T},
x̃t = arg min

xt
‖yt −Axt‖22,

s.t. xt has at most L nonzero components,
(2)

where ‖.‖2 denotes the the `2-norm.
The results of the T optimization processes can then be

combined by averaging their contributions, leading to the
OMP beamformer power spectrum POMP ∈ RP whose ith
element POMP(i) is such as

POMP(i) = ||X̃(i)||22, (3)

where X̃(i) is the ith row of matrix X̃ , [x̃1, . . . , x̃T ].
Also exploiting a sparse prior on the sources, Simulta-

neous OMP (SOMP) distinguishes from OMP by taking
into account an additional information over the signal
to recover, more particularly by explicitly formalizing its
stationarity. In practice, SOMP considers the Frobenius
matrix norm ‖.‖F of the matrix X instead of the `2-norm
of each column xt. The optimization problem takes then
the following form

X̃ = arg min
X
‖Y−AX‖2F ,

s.t. X has at most L nonzero rows.
(4)

The SOMP beamformer power spectrum PSOMP is ob-
tained by considering the same pooling strategy as in
equation (3).

III. Sparse processing for coherent loss
A. Non coherent model
Formally, model (1) does not take into account any

coherence loss. The replicas are assumed to be perfectly
known, without any random perturbation due to envi-
ronmental fluctuations. As suggested in [8], the spatio-
temporal dynamics of the environment can take the form
of a multiplicative noise Φ ∈ CM perturbing the “coher-
ent” acoustic field. Adopting such a model, the measured
acoustic field is then formalized as follows

Y = diag(Φ)AX + B, (5)

where diag(Φ) is the diagonal matrix whose diagonal is Φ.

B. Coherent sub-antenna model
Assuming an unknown Φ leads to a much more difficult

DOA estimation problem since it introduces randomness
on the observation model. To solve this problem, we
propose here to proceed by sub-space projections.
Let Wk ∈ RM×M be a projection matrix that actually

designs the shape of a sub-antenna. For a Gaussian shape,
the mth diagonal element of the matrix Wk is given by

exp
(
−(k −m)2

2γ2

)
, ∀m ∈ {1, . . . ,M}, (6)

the other elements being set to 0. For a rectangular shape,
the one we propose to use in this paper, it is expressed by{

1, if |k −m| < γ
0, if |k −m| > γ.

(7)

In both expressions (6) and (7), the parameter γ ∈ R+

approximates the average coherence length CL which is the
maximum distance where two sensors remain statistically
correlated.
Multiplying both sides of equation (5) by the projection

matrix, we get the sub-antenna model

WkY = Wkdiag(Φ)AX + WkB. (8)

The underlying idea behind such an operation is the
assumption that on each sub-antenna, there is not any
loss of coherence. In other words, we suppose here that
each sensor in the antenna is locally correlated with its
neighboring sensors. Formally, this is equivalent to say
that the coherence loss has a constant value on a sub
antenna. Let φk ∈ C be this value and Xk , φkX. The
model (8) can then be simplified into the form of

WkY = WkAXk + WkB. (9)

This sub-antenna trick allows us to convert the non-
coherent model (5) into the form of the coherent model
(1). We propose now to find a sparse solution in each of
the sub-antennas.

C. Sparse sub-antenna pooling
In this paper, and contrary to the approach proposed in

[9], we resort to as many sub-antennas as the number of
sensors in the entire antenna. Therefore, we handle a set
of M projection matrices: {W1, . . . ,WM}, defined as in
equations (6) or (7).
For each coherent model (9), we can then find a sparse

solution X̃k , [x̃k,1, . . . , x̃k,T ] by using the OMP ap-
proach:

x̃k,t = arg min
xk,t
‖Wkyt −WkAxk,t‖22,∀k, ∀t,

s.t. xk,t has at most L nonzero components,
(10)

or, equivalently, the SOMP approach:

X̃k = arg min
Xk

‖WkY−WkAXk‖2F ,∀k
s.t. Xk has at most L nonzero rows.

(11)

The resulting sub-antenna power spectrum, say PSA,
can be obtained by a similar pooling strategy to the one
proposed in (3), extended to the sub-antenna context as
follows

PSA(i) =
∑M
k=1 ||X̃k(i)||22∑M
k=1 ||X̃k(i)||0

, (12)

where ||X̃k(i)||0 counts the number of non-zero elements
in the ith row of X̃k.
A summary of each step of the proposed approach is

given in Algorithm 1.
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Algorithm 1 Sub-antenna sparse pooling (SA-OMP or
SA-SOMP)
1: for k = 1 to M do
2: Compute Wk by using (6) or (7)
3: Compute X̃k by using (10) or (11)
4: end for
5: Compute the beamformer output PSA by using (12)

D. Discussion
Using sparse techniques like OMP and SOMP usually

requires to know the exact number of sources, say N ,
the number of nonzero components being thus set to
L = N . In this paper, for both SA-OMP and SA-SOMP,
the number of nonzero components L rather controls the
beamformer power spreading that is the outcome of the
pooling process (12). As illustrated in Figure 2, this pro-
cess allows us to concentrate the maximum power around
the source directions and thus improve the resolution. Note
that this is not equivalent to increase the value of L in the
case of OMP and SOMP. Doing so would produce a power
spectrum in the form of a comb but more likely to be
mistaken in the case of environmental fluctuations. In this
paper, the number of nonzero components L is therefore
considered as a free parameter that is not necessarily cor-
related with the number of sources N . For instance, Figure
3 is obtained by setting L = 2 although N ∈ {1, . . . , 6}.
To conclude this remark, we need to stress that, unlike
OMP and SOMP, both methods SA-OMP and SA-SOMP
can be used without knowing the number of sources.

IV. Numerical simulation of coherence loss
In [8], it is shown that the loss of coherence can be

represented by a multiplicative noise. Following this idea,
we simulate the loss of coherence by simulating a mul-
tiplicative noise Φ obeying a Gaussian law. We make
the additional assumption that the random process Φ is
stationary, or in other words, the fluctuations are assumed
to be stable in time. We then have

p(Φ) = CN (0,Σ) , (13)

where CN stands for a circular complex Gaussian law.
The covariance matrix Σ allows us to control the targeted
coherence length CL which is the maximum distance where
two sensors remain statistically correlated. Formally, the
expression of the (m1,m2)th component of the covariance
matrix Σ is given ∀(m1,m2) ∈ {1, . . . ,M}2, by

Σ(m1,m2) = exp
(
−(m1 −m2)2

2C2
L

)
. (14)

In Figure 1 we show some random realizations of the
coherent loss Φ such as CL ∈ {1, 10, 20, 40}. The phase
of Φ is reported as a function of the sensor index. As
expected, we observe that the less the coherence length
CL the more the noise perturbation.

Fig. 1. Some random realizations of the multiplicative noise Φ. The
phase of Φ is reported as a function of the sensor index for different
coherent length CL ∈ {1, 10, 20, 40}. In this experiment the number
of sensors is set to M = 128.

V. Experiments
In this section, we propose extensive synthetic exper-

iments to assess the performance of the proposed ap-
proach. In these experiments, we consider the numerical
simulation of plane waves that are captured by a linear
array composed of M = 128 sensors. The sensors are
uniformly distributed such that the distance between two
consecutive sensors is set to ∆ = 0.4λ meters, where
λ = c/f denotes the wave length in meters, c = 1500
meter/second denotes the sound speed and f = 1000 Hz
denotes the signal frequency. The analytic expression of
each atom A(i) ∈ CM×1, such as A = [A(1), . . . ,A(P )],
is given by

A(i) =
{
ej

2π
λ (m−1)∆ sin(θ(i))

}
m∈{1,...,M}

, (15)

where θ(i) denotes the Direction-Of-Arrival (DOA) of the
acoustic signal in radian regarding the antenna position.
In the two following subsections, we respectively con-

duct a qualitative and quantitative analysis to characterize
the antenna resolutions and evaluate the capacity of a
beamformer to localize each source.

A. Subjective analysis of the power resolution
In Figure 2 we present a subjective analysis of the result-

ing antenna resolution. Each beamformer power spectrum
is displayed as a function of the direction angle. Both
proposed methods SA-OMP and SA-SOMP are compared
with CB. In this experiment, each sub-antenna sparse
solution is obtained such that L = 2. The sub-antennas
are designed from the rectangular shape of equation (7)
such that γ = 6. The random coherence loss is simulated
by using the covariance matrix (14), where the coherence
length is set to CL = 20. In addition, we consider an
additive white noise such that the Signal-to-Noise-Ratio
is set to SNR=10dB. We consider either two uniformly

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2479



distributed sources (Fig 2-a) or four uniformly distributed
sources (Fig 2-b). In this experiment, we consider T = 100
snapshots.

As expected, around the true source position, there is
no major difference between each beamformer. But, when
the angle differs from the optimal solutions, the SA-OMP
power and the SA-SOMP power tend to −∞, while it is
stuck to -35 dB for a CB. This goes in the favour of the
proposed methods.

At this point, it is difficult to observe a difference
between SA-OMP and SA-SOMP, even if the resolution
seems to be better with SA-SOMP. The explanation is
that SOMP provides the same zero components for each
snapshot, contrary to OMP that may propose different
zero components for each snapshots. The consequence is
that OMP provides more solutions than SOMP and that
OMP spreads the beamformer power and consequently
decreases the power resolution.

B. Quantitative analysis by ROC curves area and Monte
Carlo iterations

In the previous section we have illustrated the good
behavior of the proposed approaches with regard to the
resolution, in this section we perform a quantitative anal-
ysis to evaluate the beamformer capacity to localize each
source. Five beamformers are compared: SA-OMP, SA-
SOMP, OMP, SOMP and CB. In this experiment, the
number of snapshots is set to T = 20. The coherence loss
is modelled by using the covariance matrix (14), where
the coherence length is set to CL = 20. In addition, we
consider an additive noise such that the SNR is set to
SNR=-10 dB in Figure 3-a while it is set to SNR=10 dB
in Figure 3-b.

In order to average the results, we consider 500 Monte
Carlo iterations. At each iteration, the source positions are
randomly sampled and we add a random phase change in
[−π, π]. The ROC curve areas are computed to measure
how much each beamformer power is ranked in the same
way as the ground truth. In Figure 3, the ROC curve
area, averaged through the 500 Monte Carlo iterations,
is reported as a function of the number of sources. The
closer to 1 the ROC curve area the better the localization
performance.

In these experiments, the sub-antenna shape is rectan-
gular, according to equation (7), such that γ = CL, i.e.
knowing the coherence length. In addition, the number of
zero components is set to L = 2. For OMP and SOMP, the
number of nonzero components is set to the exact number
of sources: L = N .
Two remarks can be done at this point. Firstly, both

proposed methods SA-OMP and SA-SOMP outperform
the standard sparse beamformers OMP and SOMP. This
result tends to show that the sub-antenna pooling process
(12) allows us to improve the simple snapshot pooling
method (3). Secondly, despite both a loss of coherence
and a random white noise, the proposed method not only

(a) 2 sources at {−0.37, 0.32} radian

(b) 4 sources at {−0.65,−0.23, 0.17, 0.58} radian

Fig. 2. In this subjective analysis, we propose to compare the beam-
former powers in decibels of our Sub-Antenna Orthogonal Matching
Pursuit (SA-OMP) and our Sub-Antenna Simultaneous Orthogonal
Matching Pursuit (SA-SOMP) with the powers of a conventional
beamformer (CB). We consider either 2 sources (Fig. 2-a) or 4 sources
(Fig. 2-b). In this experiment, we consider M = 128 sensors, T = 100
snapshots, P = 128 atoms in the dictionary, an additive white
noise such that the Signal-to-Noise-Ratio equals SNR=10 dB and
a coherence length of CL = 20.

allows us to improve the antenna resolution (section V-A),
but also, it outperforms, or at least gives similar results
to, the conventional beamformer CB.
We additionally observe that SA-OMP outperforms SA-

SOMP in less noisy cases as illustrated in Figure 3-b. The
reason is that SA-SOMP offers less variability than SA-
OMP, each snapshot being considered together. In other
words, we have observe that the antenna resolution is
better with SA-SOMP at the expense of a slight reduction
of the capacity to localize.

VI. Conclusion
In underwater acoustics, the inversion techniques for

the task of source localization are sensitive to environ-
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(a) SNR=-10dB

(b) SNR=10dB

Fig. 3. In this quantitative analysis, we compare our Sub-Antenna
Orthogonal Matching Pursuit (SA-OMP) and our Sub-Antenna
Simultaneous Orthogonal Matching Pursuit (SA-SOMP) with the
powers of a conventional beamformer (CB), an Orthogonal Matching
Pursuit (OMP) and a Simultaneous Orthogonal Matching Pursuit
(SOMP). For each beamformer, we report the average area under
the ROC curve as a function of the number of sources. In Fig.
3-a the Signal-to-Nois-Ratio equals SNR=-10dB, while in Fig. 3-
b it equals SNR=10dB. In this experiment, we consider M = 128
sensors, T = 20 snapshots, P = 128 atoms in the dictionary and a
coherence length of CL = 20. In addition, there are 500 Monte Carlo
iterations to compute the average ROC curve area, some random
source positions uniformly sampled at each iteration.

mental fluctuations and have to be improved accordingly.
In order to deal with the resulting coherence loss, we
have resorted here to sub-antenna processing, where a
coherence assumption is put on each sub-antenna. Since
using such an approach leads to a loss of resolution,
we have proposed to combine it with sparse techniques.
These methods are now well-known to perform high-
resolution beamforming. Two greedy algorithms are thus
considered: the popular OMP algorithm and its multiple-
measurement version, the Simultaneous OMP. Both are

integrated into a sub-antenna processing leading to the
definition of dedicated beamforming power spectra. In
the last section, we have assessed the performance of the
approaches by extensive synthetic experiments simulating
a far-field multi-source context. By combining both a sub-
antenna processing allowing local coherence assumptions
and sparse techniques compensating the resulting loss of
resolution, the proposed approaches outperform standard
baselines of DOA estimation.

Acknowledgment
We acknowledge funding from the DGA/MRIS.

References
[1] D.H. Johnson, D.E. Dudgeon, Array Signal Processing: Concepts

and Techniques, Prentice Hall Signal Processing Series, pp. 1-512,
1993.

[2] J. Capon, High-resolution frequency-wavenumber spectrum anal-
ysis, Proceeding IEEE, vol. 57, pp. 1408-1418, 1969.

[3] G. Bienvenu, L. Kopp, Optimality of high resolution array pro-
cessing using the eigensystem approach, IEEE Transaction on
Acoustics, Speech and Signal Processing, vol. 31, no. 5, pp. 1408-
1418, 1983.

[4] A. Xenaki, P. Gerstoft, K. Mosegaard, Compressive beamform-
ing, Journal of Acoustical Society of America, vol. 136, no. 1, pp.
260-271, 2014.

[5] Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal match-
ing pursuit: recursive function approximation with applications
to wavelet decomposition, Conference on Signals, Systems and
Computers, 1993.

[6] J.A. Tropp, A.C. Gilbert, M.J. Strauss, Simultaneous Sparse
Approximation Via Greedy Pursuit, International Conference on
Acoustics, Speech and Signal Processing, 2005.

[7] P. Gerstoft, A. Xenaki, C.F. Mecklenbräuker, Multiple and single
snapshot compressive beamforming, Journal of Acoustical Society
of America, vol. 138, no. 4, pp. 2003-2014, 2015.

[8] S.M. Flatté, R. Dashen, W.H. Munk, K.M. Watson, F. Zachari-
asen, Sound Transmission through a Fluctuating Ocean, Part of
Cambridge Monographs on Mechanics, 2010.

[9] H. Cox, Line array performance when the signal coherence is
spatially dependent, Journal of the Acoustical Society of America,
vol. 54, 1973.

[10] R. Lefort, A. Drémeau, Spatio-temporal weighting for underwa-
ter source localization in the context of coherence loss, Conference
on Acoustic and Environmental Variability, Fluctuations and
Coherence, Cambridge, UK, 2016.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2481


