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Abstract—In this work, a fast and accurate chirp-rate es-
timation algorithm is presented. The algorithm is based on
the fractional Fourier transform. It is shown that utilization
of the golden section search algorithm to find the maximum
magnitude of the fractional Fourier transform domains not only
accelerates the process, but also increases the accuracy in a noisy
environment. Simulation results validate the proposed algorithm
and show that the accuracy of parameter estimation nearly
achieves the Cramer-Rao lower bound for SNR values as low
as —7dB.

Index terms— Chirp signals, fractional Fourier transform,
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I. INTRODUCTION

Chirp signals are widely used in radar [1], sonar [2],
aerospace [3], ultrasound [4], communication [5] and many
other areas. A mono-component chirp signal can be described
as a signal whose frequency may increase or decrease linearly
over time. A chirp signal embedded in noise can be defined
as

f () = Aexp [jm (mt® + 2fot + ¢o)] +w(t), (D)

where A, m, fo, and g represent amplitude, chirp rate,
initial frequency, and initial phase, respectively. The additive
white Gaussian noise (AWGN) with variance o? is represented
by w(t). Many studies have been directed towards the de-
velopment of techniques that would suffice to estimate the
chirp parameters accurately in noisy environments. For many
applications, only certain parameters are of interest. This paper
is only interested in estimating the chirp rate. Earlier methods
for estimating the chirp-rate depend on using a maximum
likelihood estimator (MLE) [6]. Although it is very precise, the
need for a multi-dimension search makes it computationally
demanding. Due to the time varying characteristic of chirp
signal, time-frequency-based methods are considered later,
such as short-term Fourier transform (STFT) [7], [8], Wigner-
Ville distribution (WVD) [9] and Radon-Wigner distribution
(RWD) [10]. Even though the complexity of STFT computa-
tion is low, estimation performance is not satisfactory due to
its poor time-frequency resolution. With its high immunity to
noise and superior time-frequency localization, WVD-based
methods have been also employed [11], [12]. However, they

ISBN 978-0-9928626-7-1 © EURASIP 2017

Omair Aldimashki
Department of Electronics and Communications Engineering
Davutpasa, Istanbul, 34220, Turkey
Email: omair@dleaf.com

are not suitable for most practical applications, because of their
high computational complexity.

The fractional Fourier transform (FrFT) has found many
applications in various areas. Application of FrFT-based algo-
rithms to the problem of estimating chirp parameters achieves
good performance [13]. In the FrFT domains, there is an
optimum transform angle associated with the chirp rate, which
concentrates the energy and keeps the signal compact. At this
angle, the signal is transformed to an impulse with a maximum
magnitude [14], [15]. Therefore, searching for the maximum
magnitude in the FrFT domains allows us to estimate the
chirp rate. Zheng and Shi [16] use the idea of maximum
magnitude of the FrFT domains for estimating a compact
fractional Fourier domain. In order to reduce the computational
complexity, they propose a coarse-to-fine grid-search strategy.

This paper proposes a fast and accurate method for estimat-
ing chirp rates in noisy environments based on the FrFT and
the golden section search algorithm (GSS). Performance of the
proposed algorithm has been evaluated using computer simu-
lations. The results of the simulations show that the proposed
method achieves higher performance in comparison with the
method used by Zheng and Shi [16] while incurring reduced
computational cost. The proposed method nearly achieves the
Cramer-Rao lower bound (CRLB) at lower SNR values.

The rest of the paper is organized as follows. Section II
introduces the FrFT briefly and then gives introductory infor-
mation about the chirp-rate estimation problem in the FrFT
domains. Section III introduces and discusses the proposed
algorithm for estimating chirp rates in the FrFT domains in
detail. The proposed algorithm is validated in Section IV,
where simulation results are given. The paper is concluded
in Section V.

II. BACKGROUND

In this section the FrFT is briefly introduced. Then, a robust
method employed in [13], [16] for estimating the chirp-rate by
using the FrFT is reviewed.
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A. The Fractional Fourier Transform

The FrFT is a generalization of the ordinary Fourier trans-
form (FT) [17], where the ordinary FT is a special case of the
FrFT. It is natural that the generalized form will enlarge the
circle of applications that can be utilized. Examples of these
applications include time-variant filtering and multiplexing
[18], solution of differential equations [19], applications of
time-frequency distributions [20], pattern recognition [21], and
many others.

In the time-frequency plane, the FrFT acts as a coun-
terclockwise rotation of the axes around the origin of the
coordinates. Therefore, the ordinary FT can be interpreted as
a rotation from time to frequency axis, in which the rotation
angle is 5. As a generalization, the FrFT is considered as a
rotation of the time-frequency axis by an angle of «. The FrFT
of a signal f(t) at the angle « is defined as

+00
fo (u) = F2 [f ()] = / F) Ko (buydt, )

where « is the transform angle. K, (¢, u) is the kernel defined
by

Ka(tvu) =
A ejﬂ'(t2 cot a+ u? cota—tucsca) «a 7& ni
0(t—u), a = 2nmw )
0(t+u), a=02nt )

Here, A, = /1 —jcota and n is any integer. Obviously,
the FrFT transforms the signal to another domain, u domain,
which is called the FrFT domain. The ordinary FT can be
obtained by setting o = 5 and a = 0 results in the signal
itself. Consequently, time and frequency domains are simply
special cases of the FrFT [22]. Assigning other values to «
results in rotated time frequency representation of the signal.
Therefore, the FrFT can be presumed to be an interpolation
between the signal f(¢) and its FT.

B. Chirp Rate Estimation in the Fractional Fourier Domains

Time-frequency distribution of a chirp signal is a straight
line making an angle associated with its chirp-rate in time-
frequency domain as seen in Figure 1-a. The FrFT is an
energy-preserving transform that can be applied to a signal
with a continuous angle of rotation as shown in Figure 1-b.
By applying a variable rotation angle, there are some angles in
which the signal gets more compact in the transform domain.
As the signal gets compact, the magnitude increases for some
values of w as a result of preservation of the energy through the
transformation. Therefore, any chirp signal can be transformed
into a impulse, where the signal’s energy is concentrated to the
smallest possible interval and the signal is in its most compact
form. The most compact form is obtained at a proper FrFT
angle, which is the optimum transform angle. A chirp signal
with a chirp rate m( has an optimal transform angle at

Qopy = arctan (mg) + g + km, 4)
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Fig. 1: The rotation and projection properties of the FrFT of
a chirp signal.

where k is any integer. At this optimum angle, magnitude
spectrum of the FrFT has a distinct peak [13]. For this purpose
we define the following function

P (@) = max {[fa {c ()} ()]}, (5)

which has a unique peak at the optimum angle. Moreover, as
the energy distribution of a white noise is symmetric, the FrFT
only concentrates the signal’s energy, but energy of the noise
is not concentrated. Therefore, FrFT is well suited to chirp-
rate estimation problems in noisy environments. Maximum of
P(«) yields a robust estimate of the optimum rotation angle
by

Qopt = argmax {P (a)}. (6)

[e3%

The estimated chirp rate is then easily found using

i = tan (Gop — g) . (7)

0 n/4 /2 3n/4 b
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Fig. 2: Tlustration of a sample P(«) for a chirp function in
a noiseless environment. Computed GSS values are shown in
the figure.
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Fig. 3: Ilustration of a sample P(«) for a chirp function in
a noisy environment. Computed GSS values are shown in the
figure.

Algorithm 1 GSS algorithm

o —ap—71 (o — g ),
ag —ag+7r (ap— ag ),
v1 = max {|fa, {c ()} (W[},
vg = max {|fa, {c ()} (v)[}
while |, — a,| > € do
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else
ap < Q9
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Qopt — Q1

d
enden
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III. ESTIMATING CHIRP-RATE USING FRACTIONAL
FOURIER TRANSFORM AND GSS

Computing the FrFT for each angle « is not practically fea-
sible, and would cause very high computational cost. Another
strategy should be adopted to avoid performing an FrFT for
each value of a. We propose to use the celebrated GSS algo-
rithm for finding the maximum value of P(«a)) which explicitly
leads to the optimal angle. The GSS is a popular algorithm
generally used for finding the maximum (or minimum) of a
unimodal continuous function over a range [a,b] without the
need to compute derivatives [23]. Using GSS accelerates the
search process by computing the FrFT at only certain limited
angles. Error tolerance of the algorithm determines accuracy
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of the result.

In GSS, the cost function is evaluated at the boundaries
of the search interval, e.g., [a,b]. Then, two points z1, 2 in
the range [a, b], are selected and the function is evaluated at
these two points. If f (x1) < f (z2), then the search interval
is limited to a new range of (z1,b]. Else, if f (1) > f (z2),
the same rule is applied and the new range containing the
maximum is set to [a,x2). If f(z1) = f(x2), then the
maximum lies in the new range (z1,25) since the points 2
and zo are on either side containing the maximum. After
updating the range, one new point is selected so that the other
can be reused. The values of x; and =5 are selected according
to zt = bl —r (bi — ai) and 74 = a’ +r (bi — ai), where
r = @ is the golden ratio. The obvious benefit is that
each time the range is updated, one of the two test points is
reused. Therefore, only one new interior point is needed and
the function is evaluated additionally one more time instead
of two at each iteration. The procedure is reiterated until the
search interval is smaller than the desired accuracy 0 < ¢ < 1.
The last updated point is chosen as the index of the maximum
value.

Figure 2 plots a sample P(«) for a chirp signal in noiseless
case and marks the first 13 GSS steps at which P(«) are
computed. As it is clear from the figure, the function P(«)
is almost unimodal, which makes GSS eligible for estimating
the chirp-rate. However, in a noisy environment P(«) is not
unimodal as shown in Figure 3. Yet, it is shown in Section IV
that GSS performs remarkably well under noisy conditions.
This is mainly because the search steps get quickly inside
the region where P(«) is high. In this region, the FrFT
concentrates energy of the chirp, but energy of the noise is
not concentrated. This is a direct consequence of the rotation
property of the FrFT in time-frequency plane. The reason
that the first few computed points are inside this region can
be explained as follows. After alias-free sampling of chirp
signals, angular chirp-rates usually decrease to smaller values.
Actually, chirp-rates of sampled signals are confined between
0 < m < 1 [24], where it corresponds to the values of
optimum angle /4 < aopt < 3m/4. Therefore, the first few
points chosen by the GSS are calculated in the region where
the effect of the noise is minor, compared to other regions.

Algorithm 1 summarizes the above algorithm in which the
GSS is applied on P («) for a signal ¢(t), where [, 3] is
the initial search interval. Figures 2 and 3 presents the first 13
steps for the GSS algorithm both with and without instances
of noise. The total iteration number is given by

™ g
logyo (5 X w—c. )

logyq (1)

; ®)

where [-] is the ceiling function. At each iteration, we compute
FrFT once. As the computational cost of FrFT is O(N log N)
[25] for a signal of length N, the total computational com-
plexity of GSS is O (I x Nlog N).
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Fig. 4: Comparison between our algorithm and MACF for different signal lengths
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IV. SIMULATION AND RESULTS

Computer experiments have been conducted to show the
efficiency of this algorithm for the chirp-rate estimation prob-
lem. A chirp signal defined in (1) is generated with the
following parameters m = 0.4, N = 256 samples, Fs = VN,
fo = —0.1. For the GSS, the search interval is chosen as [0, ]
and the tolerance is taken as e = 7/2 x 10~*. The experiment
is conducted by changing the SNR from —15dB to 15dB with
an interval of 1dB. The number of Monte Carlo simulations
is set to 200 for each SNR value. We define the MSE by

MSE =

=l

1 T
> (i = m)?, ©)
=1
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where m; is the estimated chirp rate at i-th Monte Carlo sim-
ulation and 7T is the total number of Monte-Carlo simulations
at each SNR. Figure 4 plots the performance of the proposed
algorithm for different signal lengths, 256, 512 and 1024
samples, and compares our results with Cramer-Rao lower
bound (CRLB) [26] and Zheng and Shi’s MACF algorithm
given in [16]. The results show that the proposed method
nearly achieves the CRLB for SNR values as low as —7dB.
Figure 5 plots the performance of the proposed algorithm for
a range of chirp rates between 0.1 and 0.4. The nearly flat
results in the two SNR cases prove the validity of the proposed
algorithm for a different values of chirp rates. The MACF al-
gorithm has a computational complexity of O (63 x N log N)
when the same settings given in [16] used except for the
tolerance ¢ = /2 x 10™* is taken. The proposed method
has a computational cost of O (21 x N log N). Therefore, the
proposed algorithm is three times faster than the MACEF for the
same accuracy or tolerance setting. Consequently, we conclude
that the proposed algorithm is faster, more accurate and more
robust.

V. CONCLUSION

This paper presents a new method for estimating chirp rates
in noisy environments. The proposed new method adopts the
GSS algorithm for finding the maximum value of the FrFT in
order to find the optimal angle. Simulation results prove the
validity of the proposed method. The proposed method nearly
achieves CRLB even for SNR values as low as —7dB, while
demanding lower computational complexity. In comparison
with another method, the MACE, the proposed method proves
its superiority in speed, accuracy and robustness.
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