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Abstract—This paper proposes a design of accurate non-causal
complex-valued seismic FIR wavefield extrapolation digital filters
using the homotopy based approach. The FIR filter design
problem is solved using the scalar homotopy continuation method
since the system of equations used to design the filters is overde-
termined. Appropriate wavenumber responses were obtained for
such an application but at the expense of a longer running design
time compared to other existing methods (used to design FIR
wavefield extrapolation digital filters) such as the WLSQ and the
L1-norm methods. This design running time, however, resulted
in better practical filters for this application when compared to
that obtained using the WLSQ method and is of comparable
result compared with the L1-norm method.

I. INTRODUCTION

Seismic migration is one of techniques for obtaining accur-
ate images of inhomogeneous subsurface geological structures.
One of the well established techniques of migration is the
explicit depth wavefield extrapolation. This technique requires
filtering seismic wavefields in the frequency-space (f − x)
domain based on the following (normalized) one-dimensional
(1-D) wavenumber response [1]:

Hd(e
jkx) = exp(jb

√
k2c − k2x), (1)

where kc is the normalized wavenumber cut-off, kx is the
normalized horizontal wavenumber, and b is a constant that
is equal to the ratio of the depth-sampling interval over the
spatial sampling interval. Since, both the magnitude and the
phase spectra are of even symmetry, therefore, (1) can be
approximated by a non-causal complex-valued Finite Impulse
Response (FIR) digital filter that is of even symmetry (see
for example [1]–[8]). To obtain accurate seismic images, the
accuracy of the FIR f − x digital filters requires a large
number of coefficients. At the same time, short length filters
are beneficial for strong lateral varying media.

To design these FIR filters, the homotopy continuation is
used, which is a numerical method for calculating all solutions
of a set of equations, particularly, nonlinear, [9], [10]. Such
a method has found itself lending into many interesting
applications within various disciplines (see for example
[11]–[15]). The homotopy method involves, in principle,
identifying a simple equation(s) with known solutions and
slowly deforming it into a desired equation(s) with unknown
solutions. A family of paths, during the deformation process,

is defined from the known solutions of the simple equation
to the desired solutions of the given equation(s). One way to
track the solution paths numerically is through the so-called
continuation method [10]. The homotopy method is known
to be globally convergent in contrast to many other gradient
based numerical methods [9], [10].

In this paper, it is proposed to design FIR f − x wavefield
extrapolation digital filters that are accurate for approximating
(1) using a homotopy method. This is considered a novel
and new way of designing seismic migration FIR filters and
can lend itself as a method to design other linear filters.
Homotopy continuation methods requires solving system of
equations that have equal number of unknowns to the number
of equations. The problem of designing such filter requires
solving an overdetermined problem, where the Jacobian matrix
is not square, since the number of FIR filter coefficients are
less than the number of wavenumber (frequency) samples.
Therefore, it is suggested to use the scalar-based homotopy
continuation approach suggested in [16], [17]. This method
can be used for overdetermined systems of equations and
does not require the inversion of the Jacobian matrix, while
going through the algorithm iterations. Various designs of
the seismic FIR wavefield extrapolation filters are shown and
compared with designed filters via other algorithms such as
the Weighted Least Squares (WLSQ) algorithm [6] and the
L1-norm algorithm [7].

II. DESIGN OF FIR f − x DIGITAL FILTERS BASED ON THE
HOMOTOPY METHOD

The main objective is to design an FIR f − x wavefield
extrapolation filter that approximates (1). The transfer function
for the symmetrical FIR f − x extrapolation filter is given by
the noncausal transfer function:

H(z) = h[0] +
M∑
n=1

h[n](zn + z−n), (2)

where M = N−1
2 and N is the length of the filter. Due

to the even symmetry in both the magnitude and the phase
responses in (1), the FIR coefficients h[n] belong to the set of
complex numbers. Evaluating the FIR f−x extrapolation filter
transfer function in (2) on the unit circle and performing few
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mathematical simplifications result in the following transfer
function in the wavenumber kx domain:

H(ejkx) =
M∑
n=0

(2− δ[n])h[n] cos(kxn). (3)

The design problem is to determine the set of the f − x
FIR wavefield extrapolation filter coefficients h[n] such that
H(ejkx) given by (3) fits the ideal wavenumber response
H(ejkx) given by (1). This means, according to [7], that when
sampling the wavenumber kx to obtain kxi

(i = 1, 2, . . . , R),
the response H(ekxi ) will exactly fit the desired H(ejkx) at
kxi (i = 1, 2, . . . , R). Hence, we can write the filter design
problem as:

Hd = Ch, (4)

or via the error function,

E(h) = Hd −Ch. (5)

where
h =

[
h[0] h[1] . . . h[M ]

]∗
, (6)

C =


1 cos[kx1

] cos[2kx1
] . . . cos[Mkx1

]
1 cos[kx2 ] cos[2kx2 ] . . . cos[Mkx2 ]
...

...
... . . .

...
1 cos[kxR

] cos[2kxR
] . . . cos[MkxR

]

 . (7)

and, finally,

H =
[
Hd[kx1

] Hd[kx2
] . . . Hd[kxR

]
]∗
. (8)

Note that, in this case, Hd is of dimension R × 1, C is of
dimension R×M and h is a vector of size M ×1. Also, note
that ∗ denotes the Hermitian conjugate.

A. The Homotopy-based FIR f−x Extrapolation Filter Design
Method

Let Γ(h, t) be a homotopy function, where t is a scalar
called the homotopy parameter and t ∈ [0, 1] [9]. This function
serves the objective of continuously deforming the function
E(h0) into E(h), where h0 is a simple solution. For example,
it could be the least square solution of (4):

hls = C∗[CC∗]−1Hd. (9)

Note that the homotopy function has to be continuous [9] so
that the continuous deformation will start from::

Γ(h, 0) = E(h0), (10)

and reach
Γ(h, 1) = E(h). (11)

The homotopy method assumes that (5) at t = 0 is constructed
in a way that the solutions are easy to obtain. Using numerical
continuation, the parameter t is gradually varied until when
t = 1 the homotopy function in (5) is equal to E(h).

There exists many forms of homotopy functions [9], [10].
Among the popular ones is the Newton homotopy function

given as follows [9], [10]:

Γ(h, t) = E(h)− (1− t)E(h0). (12)

Some computer codes have been developed for homotopy
methods [13]. However, the seismic FIR extrapolation filter
design problem in (5) represents an overdetermined system
of equations, hence, cannot be solved using the homotopy
function Γ(h, t). A possible way to overcome this challenge
is to convert the vector based homotopy function in (5) into
a scalar based homotopy continuation function, similar to the
work shown in [16] and [17]. Note that (5) is equal to 0 and
one can show that:

‖E(h)‖2 = 0. (13)

Hence, we can transform the vector-based homotopy shown
in (12) into a fictitious time dependent scalar function γ(h, t)
given as [16], [17]:

γ(h, t) =
1

2
‖E(h)‖2 − (1− t)

2
‖E(h0)‖2, (14)

which holds for t ∈ [0, 1] since (13) is satisfied. Now, in order
to guarantee that the homotopy path lies on the hyper-surface
given by (14), the following consistency equation then can be
shown to be:

dγ

dt
=
∂γ

∂t
+
∂γ

∂h

∂h

∂t
= 0. (15)

Assuming that the derivative of filter coefficients h with
respect to t is in the direction of the gradient of (14), then
a possible solution for such a derivative is given by [16]:

∂h

∂t
= −

∂γ
∂t

‖ ∂γ∂h‖2
∂γ

∂h
, (16)

in which the gradient of γ is assigned to be the driving force
to adjust h. We can show that, from (14), the derivatives of
the scaler homotopy function γ(h, t) with respect to h and t
are given as follows, respectively:

∂γ

∂t
=

1

2
‖E(h0)‖2, (17)

and
∂γ

∂h
= C∗E(h). (18)

Finally, employing an Euler forward scheme on (16) we can
obtain [17]:

hk+1 = hk − δt
1
2‖E(h0)‖2

‖C∗E(hk)‖2
C∗E(hk), (19)

where δt is homotopy scalar step size. This step size is
suggested to be small to achieve robust designs. You can see
from (19), that we do not require inverting the Jacobian matrix
C, hence, this is really suitable for such an overdetermined
problem.

B. The Proposed Homotopy-based FIR f − x Extrapolation
Digital Filter Design Algorithm

The proposed Homotopy-based algorithm for designing the
seismic migration f − x FIR digital filters is summarized as
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follows. The algorithm starts with an arbitrary complex-valued
vector h0 and choosing a filter length N , a wavenumber cut-
off kc, and a suitable homotopy scalar step size δt. Then for
the kth iteration, one will use the following steps:

1) Formulate the matrices C and Hd based on (7) and (8),
respectively.

2) Compute E(h0) and E(hk) using (5).
3) Obtain hk+1 using (19).

The algorithm will stop once all the points within the path
defined through the homotopy parameter are followed.

III. RESULTS

A design of the 1-D FIR wavefield extrapolation filter is
presented here using the proposed homotopy method and
is compared with those defined as a starting simple filter
solution for the homotopy seismic migration filter design
problem as well as filters designed using other methods. The
results obtained in all the simulations shown in this paper
are not restricted to the chosen parameters of the filters. For
the wavenumber response figures, only half of the spectrum
is shown, since the designed filters’ spectra are of even
symmetry with respect to the kx = 0 axis.

The FIR wavefield extrapolation filter was designed as
shown in Figure 1 using the proposed algorithm. The filter
was designed for a normalized wavenumber cut-off kc = 0.25,
a homotopy step size δt = 10−5 and with N = 35. The
same figure shows the simple solution design which is
basically the least square solution with an added 10% white
noise. Figure 1 (a) shows the magnitude responses, which
approximates the desired seismic wavefield extrapolation
filter magnitude response for both the passband and the
stopband (evanescent) parts (as given previously in (1)) with
a very good design for such an application [1]. At the same
time, Figure 1(b) shows the corresponding phase responses
of the designed seismic FIR wavefield extrapolation filter
that is very similar to the desired phase response based on
(1) within its passband and stopband regions. Also, Figure 1
displays the paths of the homotopy function deforming the
FIR wavefield extrapolation filter coefficients (c) real part
and (d) imaginary part, respectively, of the initial seismic
FIR wavefield extrapolation filter solution h0[n] into the final
homotopy solution h[n] that were shown in Figure 1.

In addition, the designed seismic FIR wavefield extra-
polation filter via homotopy was compared with two filters
designed with the Weighted Least Squares (WLSQ) method
reported in [6] and the L1-norm method reported in [7].
Both the homotopy and the L1-norm better approximate the
desired wavenumber response, when compared to the WLSQ
wavenumber response. In terms of design efficiency, both the
L1-norm as well as the WLSQ methods are more efficient
than the proposed homotopy method, as can be seen in Table
I. This is due to the small step size δt. If δt was selected
to be larger, then the design run time is expected to be

(a)

(b)

(c)

(d)
Figure 1. Accuracy of the designed seismic FIR wavefield extrapolation filters
using the proposed homotopy algorithm, with a normalized kc = 0.25, N =
35 with δt = 10−5. (a) and (b) show the magnitude and phase responses
compared with the desired wavenumber response provided in (1). (c) and
(d) show the paths of homotopy deforming the real part and imaginary part,
respectively, of the initial seismic FIR wavefield extrapolation filter solution
h0[n] into the final homotopy solution h[n].

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1409



smaller but probably at the expense on the filter performance.
The passband magnitude mean error is comparable for the
homotopy and the L1-norm designs and are lower than that
of the WLSQ. The L1 provided the best passband phase
mean error when compared with both the homotopy and the
WLSQ, although the homotopy passband phase mean error
is much lower than the WLSQ. Note that the running design
time for the seismic FIR wavefield extrapolation filters is not
the main concern for this application [2] because once the
filters are designed, they will be stored in a look-up table, and
the appropriate filter will be retrieved for usage according to
the required wavenumber cut-off. It is worth investigation in
future research to consider the effect of δt on the filter design
performance.

Table I
NUMBER OF STEPS/ITERATIONS, RUNNING DESIGN TIME, AND THE MEAN
ERROR IN THE PASSBAND OF THE MAGNITUDE AND PHASE RESPONSE FOR

THE DESIGNED SEISMIC FIR WAVEFIELD EXTRAPOLATION FILTERS
SHOWN IN FIGURE 1 BASED ON THE PROPOSED HOMOTOPY METHOD, THE

WLSQ METHOD AND THE L1-NORM METHOD FOR N = 35.

Design
method

No. of
steps or

iterations

Time
(s)

Passband
magnitude
mean error

Passband
phase

mean error
Homotopy 10, 000 8.97 3.2297e-03 2.2577e-03
L1-norm 35 0.1723 3.5373e-03 3.3341e-06
WLSQ N/A 0.32 3.6113e-01 9.1605e-02

IV. CONCLUSIONS

The paper presented a novel application of the homotopy
continuation method for the design of the challenging 1-D
complex-valued seismic FIR wavefield extrapolation digital
filters. These filters can accurately be used to solve the wave
equation that governs the propagation of seismic wavefields.
The homotopy problem was converted from a vector-based
into a scalar based problem to avoid the inversion of the
Jacobian matrix, which is not square in the case of seismic FIR
wavefield extrapolation filters. For the seismic extrapolation
filtering problem, appropriate wavenumber responses were
obtained at the expense of a longer running design time
compared to the L1-norm and WLSQ methods. The additional
design cost, however, resulted in better practical filters for this
application when compared to that obtained using the WLSQ
method and are comparable to the L1-norm method. This will
help geophysicists deliver their migrated seismic data with a
higher degree of accuracy using a new and novel method.
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