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Abstract—The present paper deals with online convex opti-
mization involving adversarial loss functions and adversarial con-
straints, where the constraints are revealed after making decisions,
and can be tolerable to instantaneous violations but must be
satisfied in the long term. Performance of an online algorithm
in this setting is assessed by: i) the difference of its losses relative
to the best dynamic solution with one-slot-ahead information of
the loss function and the constraint (that is here termed dynamic
regret); and, ii) the accumulated amount of constraint violations
(that is here termed dynamic fit). In this context, a modified online
saddle-point (MOSP) scheme is developed, and proved to simulta-
neously yield sub-linear dynamic regret and fit, provided that the
accumulated variations of per-slot minimizers and constraints are
sub-linearly growing with time. MOSP is applied to the dynamic
network resource allocation task, and shown to outperform the
well-known stochastic dual gradient method.

Index Terms—Online convex optimization, online learning, non-
stationary optimization, network resource allocation.

I. INTRODUCTION

Online convex optimization (OCO) is an emerging method-
ology for sequential inference with well documented merits
especially when the sequence of convex costs varies in an
unknown and possibly adversarial manner [2]. Starting from
the seminal papers [2] and [3], most of the early works evaluate
OCO algorithms with a static regret, which measures the differ-
ence of costs (a.k.a. losses) between the online solution and the
overall best static solution in hindsight. However, static regret
is not a comprehensive performance metric [4]. Take online
parameter estimation as an example. When the true parameter
varies over time, a static benchmark (time-invariant estimator)
itself often performs poorly so that achieving sub-linear static
regret is no longer attractive. Recent works [4]–[6] extend the
analysis of static regret to that of dynamic regret, where the
performance of an OCO algorithm is benchmarked by the best
dynamic solution with a-priori information on the one-slot-
ahead cost function. Sub-linear dynamic regret is proved to be
possible, if the dynamic environment changes slow enough for
the accumulated variation of either costs or per-slot minimizers
to be sub-linearly increasing with respect to time.

The aforementioned works [4]–[6] deal with dynamic costs
focusing on problems with time-invariant constraints that must
be strictly satisfied, but do not allow for instantaneous violations
of the constraints. The long-term effect of such instantaneous
violations was studied in [7], where an online algorithm with
sub-linear static regret and sub-linear accumulated constraint
violation was also developed. Decentralized optimization with

Work in this paper was supported by NSF 1509040, 1508993, 1509005, NSF
China 61573331, NSF Anhui 1608085QF130, and CAS-XDA06040602. Proofs
of results in this paper are available in the online version [1].

consensus constraints, as a special case of having long-term
but time-invariant constraints, has been studied in [8], [9].
Nevertheless, [7]–[9] do not deal with OCO under time-varying
adversarial constraints.

The present paper considers OCO with time-varying con-
straints. Relative to existing works, the main contributions of
the present paper are summarized as follows.

c1) We generalize the standard OCO framework with only
adversarial costs in [2]–[6] to account for both adversarial costs
and constraints. Different from the static regret analysis in [7],
[8], performance here is established relative to the best dynamic
benchmark, via dynamic regret.

c2) We develop a modified online saddle-point (MOSP) algo-
rithm for this novel OCO problem, which yields simultaneously
sub-linear dynamic regret and fit, provided that the accumulated
variations of per-slot minimizers and constraints are sub-linearly
growing with time. This provides valuable insights: When the
dynamic environment comprising both costs and constraints
does not change on average, the online decisions of MOSP are
as good as the best dynamic solution over a long time horizon.

c3) Our novel MOSP algorithm is further applied to dy-
namic resource allocation tasks, and compared with the popular
stochastic dual gradient approach [10], [11]. Relative to the
latter, MOSP remains operational in a broader setting without
probabilistic assumptions. Simulations demonstrate remarkable
performance gain of MOSP.

Notation. (·)> stands for vector and matrix transposition, and
‖x‖ denotes the `2-norm of a vector x. Inequalities for vectors
x > 0, and the projection [a]+ := max{a,0} are entry-wise.

II. OCO WITH LONG-TERM TIME-VARYING CONSTRAINTS

In this section, we introduce the generic OCO formulation
with long-term time-varying constraints, along with pertinent
metrics to evaluate an OCO algorithm in this setting.

A. Problem formulation

Online optimization with time-varying and long-term con-
straints is well motivated for applications such as traffic control,
navigation, and network resource allocation [10]–[12]. Taking
resource allocation as an example, time-varying long-term con-
straints are usually imposed to tolerate instantaneous violations
when available resources cannot satisfy user requests, and
hence allow flexible adaptation of online decisions to temporal
variations of resource availability. To broaden the applicability
of the classical OCO setting [2], [3] to these scenarios, we
consider that per slot t, a learner selects an action xt from a
known and fixed convex set X ⊆ RI , and then nature reveals

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 146



not only a loss function ft(·) : RI → R but also a time-varying
(possibly adversarial) penalty function gt(·) : RI → RI . This
function leads to a time-varying constraint gt(x) ≤ 0, which is
driven by the unknown dynamics in various applications, e.g.,
on-demand data request arrivals in resource allocation. Different
from the known and fixed set X , the time-varying constraint
gt(x) ≤ 0 can vary arbitrarily or even adversarially from slot to
slot. It is revealed only after the learner makes her/his decision,
and hence it is hard to be satisfied in every time slot. Therefore,
the goal in this context is to find a sequence of online solutions
{xt ∈ X} that minimize the aggregate loss, and ensure that
the constraints {gt(xt) ≤ 0} are satisfied in the long term
on average. Specifically, we aim to solve the following online
optimization problem

min
{xt∈X ,∀t}

T∑
t=1

ft(xt) s. t.
T∑
t=1

gt(xt) ≤ 0 (1)

where T is the time horizon, xt ∈ RI is the decision variable, ft
is the cost function, gt := [g1

t , . . . , g
I
t ]> denotes the constraint

function with ith entry git : RI → R, and X ∈ RI is a convex
set. The formulation (1) extends the standard OCO framework
[2]–[6] to accommodate adversarial time-varying constraints
that must be satisfied in the long term. Complemented by
algorithm development and performance analysis to be carried
in the following sections, the main contribution of the present
paper is incorporation of long-term and time-varying constraints
to markedly broaden the scope of OCO.

B. Performance and feasibility metrics
Regarding performance of online decisions {xt}Tt=1, static

regret is adopted as a metric by standard OCO schemes, under
time-invariant and strictly satisfied constraints. The static regret
measures the difference between the online loss of an OCO
algorithm and that of the best fixed solution in hindsight [2], [3].
Extending the definition of static regret over T slots to accom-
modate time-varying constraints, it can be written as Regs

T :=∑T
t=1 ft(xt)−

∑T
t=1 ft(x

∗), where the best static solution x∗ is
obtained as x∗ ∈ arg minx∈X

∑T
t=1 ft(x) s. t. gt(x) ≤ 0, ∀t.

A desirable OCO algorithm in this case is the one yielding a
sub-linear regret [7], meaning Regs

T = o(T ). Consequently,
limT→∞Regs

T /T = 0 implies that the algorithm is “on aver-
age” no-regret, or in other words, asymptotically not worse than
the best fixed solution x∗. Though widely used in various OCO
applications, the aforementioned static regret metric relies on a
rather coarse benchmark, which may be less useful especially in
dynamic settings. Furthermore, since the time-varying constraint
gt(xt) ≤ 0 is not observed before making a decision xt, its
feasibility can not be checked instantaneously.

In response to the quest for improved benchmarks in this
dynamic setup, two metrics are considered here: dynamic regret
and dynamic fit. The notion of dynamic regret (also termed
tracking regret or adaptive regret) has been recently introduced
in [4]–[6] to offer a competitive performance measure of OCO
algorithms under time-invariant constraints. We adopt it in the
setting of (1) by incorporating time-varying constraints

Regd
T :=

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) (2)

where the benchmark is now formed via a sequence of best
dynamic solutions {x∗t } for the instantaneous cost minimization
problem subject to the instantaneous constraint, namely

x∗t ∈ arg min
x∈X

ft(x) s. t. gt(x) ≤ 0. (3)

Clearly, the dynamic regret is always larger than the static
regret, i.e., Regs

T ≤ Regd
T , because

∑T
t=1 ft(x

∗) is always no
smaller than

∑T
t=1 ft(x

∗
t ) according to the definitions of x∗

and x∗t . Hence, a sub-linear dynamic regret implies a sub-linear
static regret, but not vice versa.

To ensure feasibility of online decisions, the notion of dy-
namic fit is introduced to measure the accumulated violation of
constraints [7], [8]. It is defined as

Fitd
T :=

∥∥∥[ T∑
t=1

gt(xt)
]+∥∥∥. (4)

Observe that the dynamic fit is zero if the accumulated violation∑T
t=1 gt(xt) is entry-wise less than zero. However, enforcing∑T
t=1 gt(xt) ≤ 0 is different from restricting xt to meet

gt(xt) ≤ 0 in each and every slot. While the latter readily
implies the former, the long-term (aggregate) constraint allows
adaptation of online decisions to the environment dynamics; as
a result, it is tolerable to have gt(xt) ≥ 0 and gt+1(xt+1) ≤ 0.

An ideal algorithm in this broader OCO framework is the
one that achieves both sub-linear dynamic regret and sub-
linear dynamic fit. A sub-linear dynamic regret implies “no-
regret” relative to the clairvoyant dynamic solution on the long-
term average; i.e., limT→∞Regd

T /T = 0; and a sub-linear
dynamic fit indicates that the online strategy is also feasible
on average; i.e., limT→∞ Fitd

T /T = 0. Unfortunately, the sub-
linear dynamic regret is not achievable in general, even when
the time-varying constraint in (1) is absent [4].

III. MODIFIED ONLINE SADDLE-POINT METHOD

In this section, a modified online saddle-point method is
developed, and its performance and feasibility are analyzed. We
show the novel approach generates a sequence {xt}Tt=1 ensuring
sub-linear dynamic regret and fit, under mild conditions of the
cost and constraint variations.

A. Algorithm development

Consider now the per-slot problem (3), which contains the
current objective ft(x), the current constraint gt(x) ≤ 0, and
a time-invariant constraint set X . With λ ∈ RN+ denoting the
Lagrange multiplier associated with the time-varying constraint,
the online (partial) Lagrangian of (3) can be expressed as

Lt(x,λ) := ft(x) + λ>gt(x) (5)

where x ∈ X remains implicit. For the online Lagrangian (5),
we introduce a modified online saddle-point (MOSP) approach,
which takes a modified descent step in the primal domain
followed by a dual ascent step at each time slot t. Specifically,
given the previous primal iterate xt−1 and the current dual
iterate λt at each slot t, the current decision xt is the minimizer
of the following optimization problem

min
x∈X

∇>ft−1(xt−1)(x− xt−1) + λ>t gt−1(x) +
‖x− xt−1‖2

2α
(6)
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where α is a positive stepsize, and ∇ft−1(xt−1) is the gradient
of primal objective ft−1(x) at x = xt−1. After the current
decision xt is made, ft(x) and gt(x) are observed, and the
dual update takes the form

λt+1 =
[
λt + µ∇λLt(xt,λt)

]+
=
[
λt + µgt(xt)

]+
(7)

where µ is also a positive stepsize, and ∇λLt(xt,λt) = gt(xt)
is the gradient of online Lagrangian (5) w.r.t. λ at λ = λt.

Remark 1. The primal update of the classical saddle-point
approach in [7], [8] is tantamount to minimizing a first-order
approximation of Lt−1(x,λt) at x = xt−1 plus a proximal term
‖x − xt−1‖2/(2α). We call the primal-dual recursion (6) and
(7) as a modified online saddle-point approach, since the primal
update (6) is not an exact gradient step when the constraint
gt(x) is nonlinear w.r.t. x. However, when gt(x) is linear, (6)
and (7) reduce to the approach in [7], [8]. The minimization in
(6) penalizes the exact constraint violation gt(x) instead of its
first-order approximation, which improves control of constraint
violations and facilitates performance analysis of MOSP.

B. Performance analysis

Before formally analyzing the dynamic regret and fit for
MOSP, we assume that the following conditions are satisfied.
as1) For every t, the cost function ft(x) and the time-varying
constraint gt(x) in (1) are convex.
as2) For every t, ft(x) has bounded gradient on X ; i.e.,
‖∇ft(x)‖ ≤ G, ∀x ∈ X ; and gt(x) is bounded on X ; i.e.,
‖gt(x)‖ ≤M, ∀x ∈ X .
as3) The radius of the convex feasible set X is bounded; i.e.,
‖x− y‖ ≤ R, ∀x,y ∈ X .
as4) There exists a constant ε > 0, and an interior point x̃ ∈ X
such that gt(x̃) ≤ −ε1, ∀t.

Assumptions as1)-as2) are typical in OCO [3], [5], [8]; as3)
restricts the action set to be bounded; as4) is Slater’s condition,
which guarantees the existence of a bounded Lagrange multi-
plier [13]. Under these assumptions, we are on track to first
provide an upper bound for the dynamic fit.

Theorem 1. Define the maximum variation of consecu-
tive constraints as V̄ (g) := maxt V (gt), with V (gt) :=
maxx∈X

∥∥ [gt+1(x)−gt(x)]
+ ∥∥, and assume the slack constant

ε in as4) to be larger than the maximum variation1; i.e.,
ε > V̄ (g). Then under the dual variable initialization λ1 = 0,
the dual iterate for the MOSP recursion (6)-(7) is bounded by

‖λt‖ ≤ ‖λ̄‖ := µM +
2GR+R2/(2α) + (µM2)/2

ε− V̄ (g)
, ∀t (8)

and the dynamic fit in (4) is upper-bounded by

Fitd
T ≤

‖λ̄‖
µ

= M +
2GR/µ+R2/(2αµ)+M2/2

ε− V̄ (g)
(9)

where G, M , R, and ε are as in as2)-as4).

Theorem 1 asserts that under a mild condition on the time-
varying constraints, ‖λt‖ is uniformly upper-bounded, and more
importantly, its scaled version ‖λT+1‖/µ upper bounds the

1This equivalently requires ε := mini,t maxx∈X [−git(x)]+ > maxx∈X∥∥[gt+1(x)−gt(x)
]+∥∥, which is valid when the region defined by gt(x) ≤ 0

is large enough, or, the trajectory of gt(x) is smooth enough across time.

dynamic fit. Observe that with a fixed primal stepsize α,
Fitd

T is in the order of O(1/µ), thus a larger dual stepsize
essentially enables a better satisfaction of long-term constraints.
In addition, a smaller V̄ (g) leads to a smaller dynamic fit, which
also makes sense intuitively.

In the next theorem, we further bound the dynamic regret.

Theorem 2. Under as1)-as4) and the dual variable initializa-
tion λ1 = 0, the MOSP recursion (6)-(7) yields

Regd
T ≤

RV ({x∗t }Tt=1)

α
+‖λ̄‖V ({gt}Tt=1)+

R2

2α
+
αG2T

2
+
µM2T

2
(10)

where V ({x∗t }Tt=1) is the accumulated variation of the per-slot
minimizers x∗t defined as V ({x∗t }Tt=1) :=

∑T
t=1 ‖x∗t − x∗t−1‖

and V ({gt}Tt=1) is the accumulated variation of consecutive
constraints V ({gt}Tt=1) :=

∑T
t=1V (gt).

Theorem 2 asserts that MOSP’s dynamic regret is upper-
bounded by a constant depending on the accumulated variations
of per-slot minimizers and time-varying constraints as well as
the primal and dual stepsizes. While the dynamic regret in the
current form (10) is hard to grasp, the next corollary shall
demonstrate that Regd

T can be very small.
Based on Theorems 1-2, we are ready to establish that under

the mild conditions, the dynamic regret and fit are sub-linearly
increasing with T .

Corollary 1. Consider as1)-as4) are satisfied, and the dual
variable is initialized as λ1 = 0. If there exists a constant β ∈
[0, 1) such that the temporal variations satisfy V ({x∗t }Tt=1) =
O(T β) and V ({gt}Tt=1) = O(T β), then choosing the primal
and dual stepsizes as α = µ = O(T

β−1
2 ) leads to the dynamic

fit Fitd
T = O(T 1−β) = o(T ) and the corresponding dynamic

regret Regd
T =O(T

β+1
2 ) = o(T ).

Corollary 1 provides valuable insights for choosing stepsizes
in non-stationary settings. Intuitively, when the variation of
the environment is fast (a larger β), slowly decaying stepsizes
(thus larger stepsizes) can better track the potential changes.
We emphasize that sub-linear dynamic regret and fit in this
novel OCO setting can be achieved when the dynamic environ-
ment consisting of the per-slot minimizer and the time-varying
constraint does not vary on average, that is, V ({x∗t }Tt=1) and
V ({gt}Tt=1) are sub-linearly increasing over T ; i.e., β < 1.

IV. APPLICATION TO NETWORK RESOURCE ALLOCATION

In this section, we solve the network resource allocation prob-
lem within the novel OCO framework, and present numerical
experiments to demonstrate the merits of our MOSP solver.

A. Online network resource allocation

Consider the resource allocation task over a cloud network
[11], [14], which is represented by a directed graph G = (I, E)
with node set I and edge set E , where |I| = I and |E| = E.
Nodes include mapping nodes in the set J = {1, . . . , J}, and
data centers in the set K = {1, . . . ,K}; i.e., I = J

⋃
K.

Per time t, each mapping node j receives an exogenous
data request bjt , and forwards the amount xjkt to each data
center k in accordance with bandwidth availability. Each data
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center k schedules workload ykt according to its resource
availability. Regarding ykt as the workloads of a virtual outgoing
edge (k, ∗) from data center k, edge set E := {(j, k),∀j ∈
J , k ∈ K}

⋃
{(k, ∗),∀k ∈ K} contains all the links connect-

ing mapping nodes with data centers, and all the “virtual”
edges coming out of the data centers. The I × E node-
incidence matrix is formed with the (i, e)-th entry A(i,e) =
1 if link e enters node i; A(i,e) = −1, if link e leaves node i;
and A(i,e) = 0, otherwise. For compactness, collect the
workloads across each edge e = (i, j) ∈ E in a resource
allocation vector xt := [x11

t , . . . , x
JK
t , y1

t , . . . , y
K
t ]> ∈ RE+,

and the exogenous load arrival rates of all nodes in a vector
bt := [b1t , . . . , b

J
t , 0 . . . , 0]> ∈ RI+. Then, the aggregate (en-

dogenous plus exogenous) workloads of all nodes are given by
Axt + bt. Assume that each data center and mapping node
has a local data queue to buffer unserved workloads [10]. With
qt := [q1

t , . . . , q
J+K
t ]> collecting their queue lengths, the queue

update is qt+1 = [qt + Axt + bt]
+. The bandwidth limit of

link (j, k) is x̄jk, and the capability of data center k is ȳk, which
can be compactly expressed by x ∈ X with X := {0 ≤ x ≤ x̄}
and x̄ := [x̄11, . . . , x̄JK, ȳ1, . . . , ȳK ]>; see the diagram in Fig. 1.

For each data center, the power cost fkt (ykt ) := fk(ykt ; θkt )
depends on a time-varying parameter θkt , which captures the
energy price and the renewable generation at data center k
during slot t. The bandwidth cost f jkt (xjkt ) := f jk(xjkt ; θjkt )
characterizes the transmission delay and is parameterized by a
scalar θjkt . Per slot t, the cost ft(xt) aggregates the power costs
at all data centers plus the bandwidth costs at all links, namely

ft(xt) :=
∑
k∈K

fkt (ykt )︸ ︷︷ ︸
power cost

+
∑
j∈J

∑
k∈K

f jkt (xjkt )︸ ︷︷ ︸
bandwidth cost

(11)

where the objective can be also written as ft(xt) := f(xt;θt)
with θt := [θ1

t , . . . , θ
K
t , θ

11
t , . . . , θ

JK
t ]> concatenating all time-

varying parameters. Aiming to minimize the accumulated cost
while serving all workloads, the optimal workload routing and
allocation strategy in this cloud network is the solution of the
following optimization problem

min
{xt∈X ,∀t}

T∑
t=1

ft(xt) s. t. qt+1 = [qt + Axt + bt]
+
, ∀t (12)

where q1 ≥ 0 is the given initial queue length, and qT+1 = 0
guarantees that all workloads arrived have been served at the
end of the scheduling horizon. Note that (12) is time-coupled,
and generally challenging to solve without information of future
workload arrivals and time-varying cost functions. Relaxing the
queue recursion in (12) by qT+1 ≥ q1 +

∑T
t=1(Axt + bt),

it readily leads to
∑T
t=1(Axt + bt) ≤ qT+1 − q1 ≤ 0, since

q1 ≥ 0 and qT+1 = 0. Therefore, instead of solving (12), we
aim to tackle a relaxed problem that is in the form of OCO with
long-term constraints, given by

min
{xt∈X ,∀t}

T∑
t=1

ft(xt) s. t.
T∑
t=1

(Axt + bt) ≤ 0 (13)

where the workload flow conservation constraint Axt+bt ≤ 0
must be satisfied in the long term rather than slot-by-slot.
Clearly, (13) is in the form of (1). Therefore, the MOSP
algorithm of Section III can be leveraged to solve (13) in

Data center  kMapping node  j

Fig. 1: A diagram of online network resource allocation. Per
time t, mapping node j has an exogenous workload bjt plus
that stored in the queue qjt , and schedules workload xjkt to data
center k. Data center k serves an amount of workload ykt out
of the assigned

∑J
j=1 x

jk
t as well as that in its queue qJ+k

t .

an online fashion, with provable performance and feasibility
guarantees. Specifically, with gt(xt) = Axt + bt, the primal
update (6) boils down to a simple gradient update xt =
PX

(
xt−1 − α∇ft−1(xt−1)− αA>λt

)
, where PX (·) defines

projection onto the convex set X . The dual update (7) is
λt+1 =

[
λt+µ(Axt+bt)

]+
, which can be nicely regarded as a

scaled version of the queue dynamics in (12), with qt = λt/µ.
In addition to simple closed-form updates, MOSP can also af-

ford a fully decentralized implementation, where each mapping
node or data center decides the amounts on all its outgoing links,
and only exchanges information with its one-hop neighbors.
Per time slot t, the primal update at mapping node j includes
variables on all its outgoing links, given by

xjkt =
[
xjkt−1−α∇f

jk
t−1(xjkt−1)−α

(
λkt −λ

j
t

)]x̄jk
0
, ∀k ∈ K (14a)

and the dual update reduces to

λjt+1 =
[
λjt + µ

(
bjt −

∑
k∈K x

jk
t

)]+
. (14b)

Likewise, for data center k, the primal update becomes

ykt =
[
ykt−1 − α∇fkt−1(ykt−1)− α

∑
j∈J (λkt − λ

j
t )
]ȳk

0
(14c)

where [ · ]ȳ
k

0 := min{ȳk,max{· , 0}}, and the dual recursion is

λkt+1 =
[
λkt + µ

(∑
j∈J x

jk
t − ykt

)]+
. (14d)

B. Numerical experiments

Consider the resource allocation task in (13) with J = 10
mapping nodes and K = 10 data centers. The cost in (11) is
ft(xt) :=

∑
k∈K p

k
t (ykt )2 +

∑
j∈J

∑
k∈K c

jk(xjkt )2, where pkt
is the energy price of data center k at time t, and cjk is the per-
unit bandwidth cost for transmitting from mapping node j to
data center k. With the bandwidth limit x̄jk uniformly randomly
generated within [10, 100], we set the bandwidth cost of each
link (j, k) as cjk = 40/x̄jk. The resource capacities {ȳk,∀k}
are uniformly randomly generated from [100, 200]. Two cases
are considered for the parameters {pkt ,∀t, k} and {bjt ,∀t, j}:

Case 1) Parameters are independently drawn from invariant
distributions. Specifically, pkt is uniformly distributed over [1, 3],
and the delay-tolerant workload bjt arrives at each mapping node
j according to a uniform distribution over [50, 150].
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(c) Dynamic regret for Case 2.
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(d) Dynamic fit for Case 2.

Fig. 2: Online performance of MOSP under Cases 1 and 2.

Case 2) Parameters are generated according to non-stationary
stochastic processes. Specifically, pkt = sin(πt/12) + nkt with
i.i.d. noise nkt uniformly distributed over [1, 3], while bjt =
50 sin(πt/12)+vjt with vjt uniformly distributed over [99, 101].

Finally, with T = 500, the stepsize in (14a) and (14c) is set
to α = 0.05/T 1/3, and for (14b) and (14d) to µ = 50/T 1/3.
MOSP is benchmarked by three strategies: the popular stochas-
tic dual gradient (SDG) approach in [10], [11], the sequence of
per-slot best minimizers in (3), and the offline optimal solution
that solves (1) at once with all future costs and constraints
available. Note that at the beginning of each slot t, the exact
prices {pkt ,∀k} and demands {bjt ,∀j} for the coming slot are
generally not available in practice [15]. Since the SDG updates
in [10] require non-causal knowledge of {pkt ,∀k} and {bjt ,∀j}
to decide xt, we modify them in this online setting by using the
prices and demands at slot t−1 to obtain xt. In this case that we
term online dual gradient (ODG), the performance guarantee of
SDG may not hold. Nevertheless, different constant stepsizes
for ODG’s dual update still lead to quite different behaviors,
thus ODG is studied under stepsizes µODG = 0.5 and 1.

Figs. 2a-2b show the test results for Case 1 under i.i.d.
costs and constraints. The dynamic regret (cf. (2)) of MOSP
grows much slower than that of ODG in Fig. 2a. Regarding
the dynamic fit (cf. (4)), Fig. 2b demonstrates that ODG with
µODG = 1 has a smaller fit than that of µODG = 0.5, and
similar to the dynamic fit of MOSP. According to the well-
known trade-off between cost (optimality) and delay (constraint
violations) in [10], increasing µODG will improve the dynamic
fit of ODG but degrade its dynamic regret. Therefore, MOSP is
favorable in Case 1 since it has much smaller regret when its
dynamic fit is similar to that of ODG with µODG = 1. Different
from Case 1, the dynamic regret of MOSP in Case 2 is not
only much smaller than ODG, but also smaller than the per-
slot optimum obtained via (3); see the negative regret of Fig. 2c.
Note that the dynamic regret can be negative since gt(x) ≤ 0
is not strictly satisfied by MOSP’s solutions per-slot [1, Sec.
III.C]. Regarding Fig. 2d, accumulated constraint violations of
both ODG and MOSP do not increase with time. The dynamic
fit of MOSP is much smaller than that of ODG with µODG =0.5,
and comparable to that of ODG with µODG = 1. Therefore, in
this non-stationary case, MOSP also outperforms ODG.

V. CONCLUDING REMARKS

OCO with both adversarial costs and constraints has been
studied in this paper. Different from existing works, the focus
is on a setting where some of the constraints are revealed
after taking actions, tolerable to instantaneous violations but

having to be satisfied on average. Performance of the novel
OCO algorithm is measured by: i) the difference of its objective
relative to the best dynamic solution with one-slot-ahead infor-
mation of the cost and the constraint (dynamic regret); and, ii)
its accumulated amount of constraint violations (dynamic fit).
For network resource allocation, it has been shown that MOSP
simultaneously yields sub-linear dynamic regret and fit, if the
accumulated variations of the dynamic solutions and constraints
are sub-linearly growing with time. This novel OCO setting
broaden the applicability of OCO to a wider application regime,
which includes, e.g., online demand response in smart grids.

REFERENCES

[1] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex
optimization approach to proactive network resource allocation,” IEEE
Trans. Signal Processing, Jan. 2017 (submitted). [Online]. Available:
https://arxiv.org/abs/1701.03974

[2] M. Zinkevich, “Online convex programming and generalized infinitesimal
gradient ascent,” in Proc. Intl. Conf. on Machine Learning, Washington
D.C., Aug. 2003.

[3] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for
online convex optimization,” Machine Learning, vol. 69, no. 2-3, pp. 169–
192, Dec. 2007.

[4] O. Besbes, Y. Gur, and A. Zeevi, “Non-stationary stochastic optimization,”
Operations Research, vol. 63, no. 5, pp. 1227–1244, Sep. 2015.

[5] E. C. Hall and R. M. Willett, “Online convex optimization in dynamic
environments,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 4, pp.
647–662, Jun. 2015.

[6] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan, “Online
optimization: Competing with dynamic comparators,” in Intl. Conf. on
Artificial Intelligence and Statistics, San Diego, CA, May 2015.

[7] M. Mahdavi, R. Jin, and T. Yang, “Trading regret for efficiency: Online
convex optimization with long term constraints,” Journal of Machine
Learning Research, vol. 13, pp. 2503–2528, Sep 2012.

[8] A. Koppel, F. Y. Jakubiec, and A. Ribeiro, “A saddle point algorithm for
networked online convex optimization,” IEEE Trans. Signal Processing,
vol. 63, no. 19, pp. 5149–5164, Oct. 2015.

[9] S. Shahrampour and A. Jadbabaie, “Distributed online optimization in
dynamic environments using mirror descent,” arXiv preprint:1609.02845,
Sep. 2016.

[10] M. J. Neely, “Stochastic network optimization with application to com-
munication and queueing systems,” Synthesis Lectures on Communication
Networks, vol. 3, no. 1, pp. 1–211, 2010.

[11] T. Chen, A. G. Marques, and G. B. Giannakis, “DGLB: Distributed
stochastic geographical load balancing over cloud networks,” IEEE Trans.
Parallel and Distrib. Syst., to appear, 2017.

[12] J. Gregoire, X. Qian, E. Frazzoli, A. de La Fortelle, and T. Wongpirom-
sarn, “Capacity-aware backpressure traffic signal control,” IEEE Trans.
Control of Network Systems, vol. 2, no. 2, pp. 164–173, June 2015.

[13] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena
scientific, 1999.

[14] T. Chen, A. Mokhtari, X. Wang, A. Ribeiro, and G. B. Giannakis,
“Stochastic averaging for constrained optimization with application to
online resource allocation,” IEEE Trans. Signal Processing, May 2017,
to appear. [Online]. Available: https://arxiv.org/abs/1610.02143

[15] S. J. Kim and G. Giannakis, “An online convex optimization approach to
real-time energy pricing for demand response,” IEEE Trans. Smart Grid,
to appear, 2017.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 150


