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Abstract—In this paper, we focus on the problem of sound source

localization and we propose a technique that exploits the known and

arbitrary geometry of the microphone array. While most probabilistic

techniques presented in the past rely on Gaussian models, we go further

in this direction and detail a method for source localization that is based

on the recently proposed α-stable harmonizable processes. They include

Cauchy and Gaussian as special cases and their remarkable feature is

to allow a simple modeling of impulsive and real world sounds with few

parameters. The approach we present builds on the classical convolutive

mixing model and has the particularities of requiring going through the

data only once, to also work in the underdetermined case of more sources

than microphones and to allow massively parallelizable implementations

operating in the time-frequency domain. We show that the method yields

interesting performance for acoustic imaging in realistic simulations.

Index Terms—source localization, acoustic modeling, α-stable random

variables, spectral measure, sketching

I. INTRODUCTION

Over the past few years, many studies have been conducted on the

localization of audio objects, called sources, in an acoustic environ-

ment. The purpose of this trend of research may for instance be to

recover speech from a noisy [1], [2], [3], [4] or reverberant [5], [2]

environment, while knowing the geometry of the microphone array.

In the scientific community, the incoming direction of propagating

waves originating from a source is called a direction of arrival (DoA).

Its knowledge is useful in a wide range of applications: sonar [6],

[7], wireless communications [8], or medical imaging [9], [10] to

cite a few. For the estimation of the DoAs, an efficient approach

is to consider several candidate directions and the corresponding

wave propagation as given by the physical model. In practice, this

approach makes it possible to build the propagation operator from all

candidate DoAs through the so-called mixing matrix, encapsulating

the physical model. Several methods were proposed for estimating

the DoAs. Among those, we may mention the celebrated MUSIC

algorithm [11], which assumes that the number of sources is equal

to the rank of the signal subspace and uses its orthogonal subspace

called noise subspace for localization. The ESPRIT algorithm [12] is

similar to MUSIC but exploits further rotational invariance properties

for the signal subspace. Both algorithms achieve good localization,

even though ESPRIT proved to be more robust against noise than

MUSIC [13]. Another path of research in the case of audio local-

ization is based on the Local Gaussian Model introduced in [14].

In this model, the dependences between the observations at different

microphones are not modeled deterministically using classical fea-

tures such as inter-channel time differences, but rather directly as

frequency-dependent correlations embedded in the so-called spatial

covariance matrices. In this context, the spatial covariance matrices

This work was partly supported by the research programme KAMoulox
(ANR-15-CE38-0003-01) and EDiSon3D (ANR-13-CORD-0008-01) funded
by ANR, the French State agency for research.

corresponding to each DoA may be learned beforehand and used

afterwards for localization as in [15].

The aforementioned methods for localization all exploit second-

order statistics for the sources or observation signals, which are

commonly modeled as wide-sense stationary (WSS) processes. From

this perspective, it is common to pick a Gaussian process model for

the signals [16], to be used along with the assumption of independent

sources. Model parameters are then usually estimated by means of

an expectation–maximization (EM) algorithm.

However, several studies pinned down the empirical fact that

the marginal distributions of the signals of interest work poorly in

accordance to the Gaussian model. In other terms, the histogram of

the signals of interest is rarely correctly modeled by a Gaussian or

a mixture of just a few Gaussian distributions. A classical option to

address this problem is to adopt an heteroscedastic Gaussian model,

meaning that we adopt varying mean and covariance parameters.

In audio, this is notably the case of the Local Gaussian Model

(LGM [14]), which operates on the Short Term Fourier Transform

(STFT) and models all its entries as independent and centered

Gaussian with different variances. As shown, e.g. in [17], this

is equivalent to assuming the processes to be locally WSS. This

approach yields good performance at the cost of requiring much

more parameters to estimate than a simpler marginal model. That

said, even when sticking to this local stationarity idea, the Gaussian

model was recently outperformed in the context of single channel

enhancement by its heavy-tailed α-stable generalization [18], coined

in [19] as the α-harmonizable model. This framework encompasses

the Cauchy (α = 1) and Gaussian (α = 2) special cases and leads to

better filtering performance for the same computational complexity.

Picking an α-stable model for modeling time series has the advan-

tage of better accounting for the impulsivity and noisiness of real-

world signals, and the particular α-harmonizable case further permits

convenient Time-Frequency (TF) processing. Still, the question of

how to handle multichannel signals in this context remains unclear.

Indeed, α-stable distributions have the noticeable disadvantage of not

having finite second-order moments, prohibiting algorithms such as

MUSIC or ESPRIT. Some research around this powerful framework

has focused on beamforming under α-stable noise [20], but this does

not translate to the case of α-stable target sources. More recent

studies such as [21] considered Independent Component Analysis

(ICA) for α-stable sources and successfully applied the method for

the processing of heavy-tailed biomedical data in [22]. This is relevant

in our setting because ICA and localization are related problems [23],

[24] in the sense that estimating a mixing matrix is related to

estimating DoAs. However, the approach in [21] suffers from several

intrinsic limitations. Firstly, it considers sources that are independent

and identically distributed (i.i.d.) in the time domain, which is a

poor assumption in audio. Secondly, it relies on instantaneous mixing

scenarios, for which the mixing matrix boils down to just scalar

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 11



gains applied to the sources. While this is sufficient for electric or

magnetic wavelengths, it is not realistic in an acoustic setting where

the time taken by waves propagation is not negligible. Finally, the

approach badly scales to massively multichannel arrays because it

requires uniform gridding of the K-dimensional sphere where K is

the number of microphones. This is prohibitive in the case of a few

dozens or hundreds of microphones.

In this paper, we build on previous work on α-stable multivariate

data [21], [25] but we extend the approaches to deal with those

aforementioned drawbacks while providing exact inference. Firstly,

we pick the α-harmonizable processes instead of i.i.d. α-stable

sources. This has the advantage of accounting for realistic locally

stationary impulsive signals. Secondly, we pick a marginal model for

the sources in the Time-Frequency domain, meaning that each source

is parameterized by only a very limited number of parameters, in

contrast to the LGM model. The resulting localization method is not

likely to be trapped in local minima for parameters estimation. Ac-

tually, the corresponding optimization problem we present is convex.

Thirdly, we exploit the knowledge of the geometry of the microphone

array along with physical assumptions about sound propagation to

allow for exact inference even in massively multichannel arrays. This

comes with a realistic modeling of convolutive mixing scenarios. Very

interestingly, the resulting algorithm is finally of linear complexity:

the data needs only to be processed once through a very simple

sketching operation [26] to yield a very small representation from

which the DoAs are estimated.

II. NOTATION, MODEL AND THEORY

A. Notation and acoustic model

We consider L possible positions in the 3-dimensional space. We

then assume that each of them is the spatial location of a source sl.
Whenever no real source is actually present at that location, sl should

simply be estimated as 0. Our objective in this study becomes to

estimate the magnitude of all sl, removing the need of knowing the

actual number of active sources. Now, picking an STFT representation

with F frequency bands and T time frames, the sources are described

by a tensor of size F ×T ×L, with complex entries. Hence, sl (f, t)
is the complex spectrum of the lthsource at TF-bin (f, t). Likewise,

x is the F × T × K tensor gathering the STFTs of the signals

received by K microphones. x (f, t) denotes the K × 1 complex

vector grouping the STFTs of all received signals at TF bin (f, t). The

positions of the K microphones in R
3 are assumed known. Classical

acoustic propagation theory leads us to take the mixtures as a linear

combination of the sources weighted by the complex K × 1 steering

vectors Al (f), also called mixing filters [27]:

∀ (f, t) , x (f, t) ≃

L∑

l=1

Al (f) sl (f, t) . (1)

In the context of the classical near field region assumption [28], the

steering vectors are for instance given by:

∀l, f , k, [Al (f)]k =
1

rkl
exp

(
−i

ωfrkl
c0

)
, (2)

where rk,l is the euclidean distance between the kthmicrophone and

the lth source, ωf is the angular frequency in frequency band f
and c0 is the sound speed in the air. In the general case, the steering

vectors are provided by any relevant acoustical modeling of the room

or even by actual measurements of the Room Impulse Responses

(RIR). Given this acoustic model, we now turn to the isotropic α-

stable model that we pick for the source signals sl.

B. Isotropic α-stable distributions and source model

Let v be a complex random variable and ϕv its characteristic

function (chf.). We say that v follows a symmetric isotropic α-stable

distribution with α ∈ (0, 2], denoted SαSc, if and only if ϕv has the

following form:

∀θ ∈ C, ϕv (θ) , E (exp (iℜ (θ⋆v))) = exp (−Υ |θ|α) , (3)

where , denotes a definition, |.| denotes the modulus, ·⋆ denotes

complex conjugation, ℜ (z) is the real part of z ∈ C and Υ ≥ 0
is a scale parameter that basically characterizes the amplitude of

v ∼ SαSc(Υ). This is a useful distribution for modeling impulsive

data in signal processing [29], [30], [31]: the closer the characteristic

exponent α is to 0, the heavier the tail is.

In this paper, we assume that each source sl is an α-harmonizable

process [19]. This boils down to taking the random variables sl (f, t)
for all l, f, t as mutually independent, and distributed according to:

sl (f, t) ∼ SαSc (Υl) . (4)

The scale parameters Υl can be viewed as the amplitudes of the

latent sources and are equal to 0 when there is no source in the

direction considered. As can be seen, the scale parameters Υl of

the source signals are here taken as independent of both time and

frequency. This strongly contrasts with the LGM model [14] for

which they are time and frequency dependent. The fact is that picking

a heavy-tail distribution such as SαSc precisely allows for such a

simple marginal model. Let Υ , [Υ1, . . . ,ΥL]
⊤

be the main L× 1
quantity of interest to estimate, coined in [32] as the discrete spatial

measure (DSM).

C. Spatial measure for multichannel α-stable convolutive mixtures

According to (1) and (4), all vectors x (f, 1) , . . . ,x (f, T ) share

the same distribution for a given frequency f . Moreover, it can be

shown that they are symmetric α−stable random vectors but they are

not isotropic. Let ϕf be the chf. of the distribution of x (f, t) for

any t:

∀θ ∈ C
K , ϕf (θ) , E (exp (iℜ 〈θ,x (f, t)〉)) . (5)

where 〈., .〉 is the inner product on C
K . It can be uniquely expressed

for α ∈ (0, 2) as [18, p58]:

∀θ ∈ C
K , ϕf (θ) = exp

(
−

ˆ

a∈SK

C

|〈θ,a〉|α dΓf (a)

)
, (6)

where S
K
C is the complex K-dimensional sphere S

K
C ,{

(z1, . . . , zK) ∈ C
K ;
∑K

k=1 |zk|
2 = 1

}
, and Γf is called the spec-

tral measure, and is symmetric in the sense that for any contin-

uous function ϕ defined on S
K
C and for any z ∈ S

1
C , we have

´

a∈SK

C

ϕ(a)dΓf (za) =
´

a∈SK

C

ϕ(a)dΓf (a). We now introduce

the quantity:

If (θ) , − ln (ϕf (θ)) , (7)

called the Levy exponent [33] of the distribution of x (f, t). Com-

bining (6) and (7), we get:

If (θ) =

ˆ

a∈SK

C

|〈θ,a〉|α dΓf (a) . (8)

In this paper, we will exploit the Levy exponent for model

estimation. To do this, it is desirable for computational reasons to

approximate the integral in (8) as a finite sum. In practice, the

sampling of a high dimensional sphere such as S
K
C would raise the
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tricky issue of the curse of dimensionality. This is basically what is

done in [21] in the real case. To avoid it, the particular approach we

propose in this paper is to exploit the additional information provided

by the physical model (2).

Proposition 1. In our case (1), dΓf (a) is a sum of point masses:

dΓf =
L∑

l=1

Υl‖Al (f) ‖
αδal(f), (9)

where ‖.‖ stands for the Hermitian norm and δal(f) denotes the Dirac

measure centered at al (f) , Al (f) /‖Al (f) ‖ and associated1 to

the equivalence relation a ∼ b⇔ ∃z ∈ S
1
C , a = zb.

Proof: In short, we generalize [18, p70] to the complex case

by substituting (1), (3) and (4) into (5) and by considering the

independence of the sources, which yields:

∀θ ∈ C
K , If (θ) = − ln

(∏L
l=1 ϕsl(f,t) (〈Al (f) ,θ〉)

)

=

L∑

l=1

Υl |〈θ,Al (f)〉|
α.

(10)

Since the same expression of ϕf (θ) can be obtained by substitut-

ing (9) into (6), and since the spectral measure Γf introduced in (6)

is unique, (10) proves (9).

In this study, for each frequency f , we estimate Υ by exploiting

relation (10) for L values θ1 (f) , . . . ,θL (f) of its operand. Assum-

ing we have chosen those θl (f), let:

If , [If (θ1 (f)) , . . . , If (θL (f))]⊤ (11)

be the (nonnegative) L×1 vector gathering the Levy exponents of the

mixture at frequency f for these θl (f) . Defining now the matrix Ψf

of size L× L by:

[Ψf ]l,l′ , |〈θl (f) ,Al′ (f)〉|
α , (12)

equation (10) leads to If = ΨfΥ. Since this equality holds for all f ,

we can concatenate all If into the FL× 1 vector I and all Ψf into

the known FL× L matrix Ψ. We obtain:

I = ΨΥ, (13)

which is our starting point for estimating Υ. In practice, we pick

θl (f) = Al (f), because this choice proved effective and leads to

a symmetric matrix Ψf . Note however that other options may be

considered.

III. PARAMETER ESTIMATION

We now present a way to estimate Υ using (13). This method

is divided into two steps: firstly, we estimate I from the data and

secondly, we estimate Υ based on the knowledge of this estimate,

the knowledge of Ψ and the equality I = ΨΥ.

A. Estimation of I: empirical levy exponent

The classical empirical characteristic function (ECF) of the obser-

vations x (f, 1) , . . . ,x (f, T ), denoted ϕ̃f , is defined as [34]:

∀θ ∈ C
K , ϕ̃f (θ) =

1

T

T∑

t=1

exp (iℜ 〈θ,x (f, t)〉) . (14)

1In other words, for any continuous function ϕ defined on S K
C

,
´

a∈SK

C

ϕ(a)δal(f)
(a) =

´

z∈S 1
C

ϕ(z al(f))
dz
2π

.

It would be logical to apply (14) to estimate If as Ĩf =
− ln (ϕ̃f (θ)). However, taking the logarithm of (14) may raise an

issue because ϕ̃f could be complex-valued numerically. Fortunately,

in the symmetric α-stable case, we can address this issue in the

following way:

Proposition 2. In the SαSc case, we can define an unbiased

estimator of the chf. as:

∀θ ∈ C
K , ϕ̂f (θ) =

∣∣∣∣∣
1

T

T∑

t=1

exp

(
i
ℜ 〈θ,x (f, t)〉

21/α

)∣∣∣∣∣

2

. (15)

Proof: From the α-stability assumption, we have

that the two sets of observations: {x (f, t)}t and{(
2−1/α

)
(x (f, t1)− x (f, t2))

}

t1,t2

share the same probability

distribution. Replacing the first one by the second one in (14), and

factorizing the result, we finally get (15).

Since ϕ̂f (θ) is nonnegative, we can define the empirical Levy

exponent: Îf (θ) = − ln ϕ̂f (θ).

The strategy we adopt is simply to compute the empirical Levy

exponent Îf (θ) of the data for all θl (f) = Al (f) . As in

section II-A, we put all those LF estimates together and note them Î .

Following (13), they obey:

Î ≈ ΨΥ. (16)

It is fundamental to note here that the estimate Î of the Levy

exponent is obtained after only one pass over the data through a very

simple procedure (15). Parameter estimation is then achieved from

this compressed LF × 1 vector Î only, through Î ≈ ΨΥ̂, and not

using the much larger F ×T ×K observation dataset x. We see we

have here an example of the sketching framework recently discussed

in [26], that naturally arises when considering α-stable random

variables. This fact means that the proposed estimation procedure

is not only of linear complexity, it is massively parallelizable over

both time and frequency.

B. Estimation of Υ with nonnegative optimization

Our objective is the estimation of the nonnegative quantity Υ, so

that (16) is verified. A natural idea for this purpose is to estimate it

so as to minimize the discrepancies between the left and right-hand

sides of (16), by picking:

Υ̂← arg min
Υ≥0

∑

f,l

dβ
(
Î | ΨΥ

)
(17)

where dβ is any data-fit cost function such as the β−divergence [35]:

dβ(x|y) = 1
β(β−1)

(xβ + (β − 1)yβ − βxyβ−1) ∀x > 0, y >

0, β ∈ R\ {0, 1}. To solve this optimization problem, we note that

all quantities involved in (17) are nonnegative, so that it is natural to

adopt a now-classical multiplicative update strategy as in nonnegative

matrix factorization (NMF, [36]) and to iterate the following update:

Υ̂← Υ̂ ·
G−

(
Υ̂

)

G+

(
Υ̂

) , (18)

where a · b and a
b

stand for element-wise multiplication and division

of a and b, respectively. G−

(
Υ̂

)
and G+

(
Υ̂

)
are obtained by the

following calculation:
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∇Υ̂dβ
(
Î|ΨΥ̂

)
= Ψ

⊤

((
ΨΥ̂

)β−1
)

︸ ︷︷ ︸
G+

(
Υ̂

)

−Ψ
⊤

((
ΨΥ̂

)β−2

· Î

)

︸ ︷︷ ︸
G−

(
Υ̂

)

.

(19)

The algorithm box below summarizes this approach.

Algorithm 1 Estimation of the spatial measure Υ̂

1) Input

• Number L of possible positions.

• Steering vectors Al(f) as in (2) or directly using RIR.

• STFTs x of the mixture, of size F × T ×K.

• Number of iterations.

• Parameters α and divergence to be used.

2) Sketching:

for all f , compute Îf (Al (f)) = − ln ϕ̂f (Al (f)) using (15)

3) Parameter estimation

• Compute Ψf according to (12) with θl (f) = Al (f).
• Compute Υ̂ by iterating over (18).

IV. EVALUATION

In this section, we investigate the performance of the proposed

method with room impulse responses RIRs2, simulating a room of

dimensions 5 × 4 × 3 m with 0.4 s of reverberation time [37].

The sources are taken as voice samples from the CMU3 dataset

with sample rates of 16 kHz and distributed randomly on a 5 × 4
plane, 1.5m above the floor. The candidate locations for analysis are

positioned on a grid of 10 cm step size, corresponding to L = 2091,

and 5 cm shifted with respect to the true sources’ locations to ensure

realistic experiments. Then, the observations x (f, t) are obtained by

propagating the sources the RIR (2). The excerpts considered last 15
seconds (T = 391) and we use only the F = 128 frequency bands

corresponding to the interval [1000, 3000] Hz.

We pick α = 1.2 after [19], and we set the beta divergence

parameter to β = 0 (Itakura-Saito divergence). We run 70 iterations

of the NMF algorithm in step 3) of Algorithm 1.

The baseline method we use here for comparison is the steered re-

sponse power (SRP, [38]). It consists in backpropagating the observa-

tions towards the sources locations using the steering vectors Al (f).
Basically, it computes simple inner products between x (f, t)

and Al (f). We define the SRP measure B̂ ,

[
B̂1, . . . , B̂L

]⊤
as:

∀l, B̂l =
1

FT

∑

f,t

|A⋆
l (f)x (f, t)| . (20)

To compare the performance of both approaches, we first define the

ground truth as the support of the true DSM Υ, that is: 1 in the active

directions and 0 otherwise, followed by a smoothing using a Gaussian

kernel with a 10cm length-scale. We compute a total number of 200
simulations, i.e. 20 independent trials for each case of J = 1, . . . , 4
sources and K = 3, 4, 10, 20, 30 randomly positioned microphones.

We first note in Fig. 1 that the score obtained with SRP is much

lower than the correlation obtained with the proposed method. After

investigation, it turns out that this bad performance is mostly due

to the fact that much of the energy of the SRP is spread out across

many directions. We highlight that a large number of microphones

delivers better results (≃ 65% for K = 30 and ≃ 21% for K = 3).

2https://www.audiolabs-erlangen.de/fau/professor/habets/software/
rir-generator

3Carnegie Mellon University dataset : http://www.festvox.org/cmu_faf/
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Figure 1. Scores of correlations with ground truth. Black whiskers depicted
the deviations.

Still, a very interesting feature of the proposed approach is that

it yields a DoA heatmap (the DSM) that is intrinsically very sparse,

contrarily to SRP, as can be seen with a typical example shown on

Fig. 2.
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Figure 2. Localization heatmap with the spatial measure Υ̂ (top) and the

SRP B̂ (bottom) for 30 microphones and 4 sources.

V. CONCLUSION

In this paper, we proposed an α-stable multivariate probabilistic

model for multichannel audio recordings and we have shown that

it leads to the concept of the discrete spatial measure (DSM),

which is directly related to the directions of arrivals of the sources.

Exploiting acoustics, we have proposed a method to estimate the

DSM, that requires going through the data only once and that is of

linear complexity, making it possible to process streams of massively

multichannel audio. We have shown that the method considerably

outperforms classical beamforming approaches in terms of acoustic

imaging and showed its interest in blindly imaging virtual sources and

thus the shape of the room through the exploitation of the echoes.

This study would now benefit from more challenging experiments

where the method would be compared with more robust algorithms as

CLEAN and RELAX. Another step into the α-stable theory would

be to augment the model with elliptically contoured distributions,

permitting the introduction of some uncertainty on the steering

vectors.
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