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Abstract—This paper presents a new model order selection
technique for signal processing applications related to source
localization or subspace orthogonal projection techniques in large
dimensional regime (Random Matrix Theory) when the noise en-
vironment is Complex Elliptically Symmetric (CES) distributed,
with unknown scatter matrix. The proposed method consists
first in estimating the Toeplitz structure of the background
covariance matrix. In a second step, after a whitening process,
the eigenvalues distribution of any Maronna’s M-estimators
is exploited, leading to the order selection. Simulations made
on different kinds of CES noise as well as analysis of real
hyperspectral images demonstrate the superiority of the proposed
technique compared to those of Akaike Information Criterion
and the Minimum Description Length.

I. INTRODUCTION

In signal processing, covariance matrices often contain in-
formation related to signals of interest. For example in source
localization [1], the estimation of the direction of arrival, i.e.
the estimation of the signal subspace, can be done thanks to the
estimation and the exploitation of the covariance matrix. When
sources are polluted with noise coming from the sensors, the
channel, or other disturbances, the estimation of the covariance
matrix is degraded. In the example of N sensors detecting sig-
nals of size m, the estimation of the covariance matrix is also
degraded if the dimensions N and m go to infinity with a fixed
ratio [2]. And this situation arises frequently since sensors are
developed to be more accurate and numerous: this search of
accuracy leads to an accumulation of large data that need to
be processed. Model order selection for detecting the number
of sources in a multichannel time-series or for estimating the
rank of a subspace remains therefore an important problem in
statistical signal processing as in security, medical screening,
astronomy, finance, communication and other scientific fields.
Beyond the problem of estimation of the signal subspace, the
covariance matrix is also used in detection [3], or filtering
[4]. Thus, developing more efficient tools and techniques is
relevant.

All these related techniques are commonly based on the
application of the information theoretic criteria for model order
selection such as the Akaike Information Criterion (AIC) [5]
or the Minimum Description Length (MDL) [6], [7] and [8] for

gaussian processes. Since many techniques are based on the
eigenvalue-decomposition or the singular value decomposition
of the collected data covariance matrix, Wax and Kailath [9]
have derived the eigenvalue forms of these two criteria which
can be applied conveniently in array signal processing prob-
lems. In their seminal work as well as in most applications,
the additive noise process is assumed to be spatially and
temporally white Gaussian random process. These methods are
shown to fail when the noise is not white Gaussian distributed
or even non-Gaussian. When the dimension of the observation
is growing, these methods also give very bad performances
[10].

In a lot of fields such as hyperspectral imaging which deals
with multivariate data of large dimension, data are generally
compressed or projected before being processed [11]. The
Random Matrix Theory (RMT), recently developed in signal
processing (see [12] for one of the first use of RMT in a
signal processing field), provides some useful properties or
attributes to handle with these kind of matrices [13] without
using dimensionality reduction. This theory proposes, among
others, methods to estimate the distribution of eigenvalues for
large matrices [14] or for mixed-model with a signal composed
of few sources and additive noise [15] or [16].

This article first proposes a new estimator for the covariance
matrix when the noise is correlated and non-Gaussian. This es-
timator is developed here in the Complex Elliptical Symmetric
noise (CES) context [17], which is a better characterization for
the noise in a lot of applications (for example in hyperspectral
imaging [18]). For non-RMT processes, Toeplitz matrices
have been widely studied for example in [19], or [20]. But
herein they are exploited in a large dimension regime. The
proposed method is decomposed in two parts and presented
in two different sections. A first section sets the chosen
model, a second presents the beginning of the method, that
is to "toeplitzify" the empirical estimation of the covariance
matrix (the Sample Covariance Matrix (SCM)) and prove the
consistency of this "toeplitzified" estimator compared to the
true covariance matrix. This estimator is needed to white the
data. In a last section of the second part, we propose to use a
Maronna’s M-estimator [21] to estimate the so-called scatter
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matrix (covariance matrix up to a factor) of the uncorrelated
CES noise. This proposed robust estimator extends the field
of application of the article of J. Vinogradova [22] to the one
of the MDL and AIC methods. The end of this third section is
devoted to the model order selection. Indeed a threshold can
be applied on the eigenvalues of the covariance matrix. All
eigenvalues greater than this threshold can be proved to be
relative to sources due to RMT properties. A final part presents
the relevance of this method on simulated signals and on real
hyperspectral images.

Notation: Vectors are in bold and matrices in bold and cap-
itals letters. Let A be a matrix, AT and AH are respectively
the transpose and the Hermitian transpose of A, (A)i,j is the
(i, j)-th element of the matrix. If A is a square matrix of size
m×m then {λi(A)}i=1,...,m are the eigenvalues of A. E[x]
is the statistical mean of the random variable x. a.s. stands
for the almost sure convergence. For any complex scalar a,
a? denotes its complex conjugate. d1(.) means the distance
associated with the l1-norm. The distribution δ denotes the
Dirac measure, supp(.) the support of any measure and ‖.‖ the
spectral matrix norm. The Toeplitz matrix operator is acting on
any vector x as T : x → T (x) where ([T (x)]i,j)i≤j = xi−j
and ([T (x)]i,j)i>j = x∗i−j .

II. THEORETICAL ASPECTS

A. Model and Assumption

Let us consider a set of N observations {yi}i∈[1,N ] where
each yi is a multidimensional m-vector. In this article, we
suppose here the usual random matrix regime, i.e. N → ∞,
m→∞ with the constant regime cN = m

N → c, c > 0.
The general model characterizing the presence of p sources
corrupted with an additive Complex Elliptically Symmetric
(CES) noise can be stated as the following set of binary
hypothesis test:

H0 yi =
√
τi C

1/2 xi , i ∈ J1, NK ,

H1 yi =

p∑
j=1

si,j mj +
√
τi C

1/2 xi , i ∈ J1, NK ,

(1)
where mj are, for each observation i, the unknown m-steering
vector of the j-th deterministic source with power si,j , where
xi is a multivariate zero-mean white noise of independent
entries identically and uniformly distributed on the m-unit-
sphere, where τ1, . . . , τN are positive scalar random texture
variables and where C is a Hermitian Toeplitz covariance
matrix defined as C = T

(
(c0, . . . , cm−1)T

)
. For large ran-

dom matrix regime, i.e. when N → ∞, we suppose that

µN = 1
N

N∑
i=1

δτi satisfies
∫
τµN (dτ) → 1 almost surely,

that 1
N

∑
δλi(C) converges almost surely toward the true

measure ν and moreover, maxi d1(λi(C), supp(ν)) → 0 and
that {ck}k∈[0,m−1] are absolutely summable coefficients, such
that c0 6= 0.

By denoting Y = [y1, . . . ,yN ] the m × N -matrix con-
taining all the observations, X = [x1, . . . ,xN ] the m × N -

matrix containing white noise, T the N × N -matrix con-
taining the {τi}i∈[1,N ] on its diagonal and zero elsewhere,
M = [m1, . . . ,mp] the m×p-mixing matrix containing the p
steering vectors corresponding to the sources and

(
ST
)
i,j

=
si,j the N × p-matrix representing all the source power, we
can write:

Y = M S + R ,

where R = C1/2 X T1/2 is the additive correlated CES noise.

B. Signal Whitening

The noise being correlated, we propose in this section a
consistent estimator of the covariance matrix C built on the
measurements Y. We first analyze the hypothesis H0, i.e. no-
sources are contained in the measurements.
Let us define č = (č0, . . . , čm−1)T the vector built with ele-
ments given by averaging along each diagonal the signal-free
Sample Covariance Matrix (SCM) Y YH/N = R RH/N :

čk =
1

mN

m∑
i=1

N∑
j=1

yi,j y
?
i+k,j 11≤i+k≤m , (2)

where k ∈ J0,m−1K and where 1A is the indicator function on
the set A. It can be noted that this averaging process consists
in dividing each sum on each diagonal by m, leading to a
so-called biased Toeplitz estimate.

Theorem 1 (Consistent estimator of C). Under the same as-
sumptions defined above, we have the following convergence:

‖T (č)− E[τ ] C‖ → 0 . (3)

Up to an unknown scale factor E[τ ], a consistent estimator of
C is therefore given by Č = T (č).

Proof. The proof follows the one in [22] and will not be done
due to the lack of space. The proof relies on the Lemma 4.1
from [23], which sets an inequality between the l2-norm of
a matrix and the Fourier series of the correlation coefficients
of the matrix (power spectral density). The left term of the
theorem is cut in two parts, and we prove than each converges
to zero. Once in the Fourier space, the steps of the proof
are overall the same than in [22], with an additional term
‖T‖ found on the denominator of the upper bound of the
inequality.

The consistency of the proposed estimator can be shown in
Figure 1. The chosen signal is a white Gaussian noise X cor-
related with a Toeplitz matrix C = T

((
ρ0, ρ1, . . . , ρm−1

)T)
where ρ = 0.7. The texture {τi}i∈[1,N ] is randomly extracted
from an inverse gamma distribution with mean equal to one.
The corresponding noise is therefore Student-t-distributed.
This figure presents the spectral norm (log scale) of the differ-
ence between the real covariance matrix C and respectively
the proposed estimator in green, and the usual SCM estimator
equal to 1

N R RH in red when N varies from 20 to 2000 and
c = 0.2 (20 Monte Carlo trials). The SCM is shown here not
to be consistent. The estimator proposed in Theorem 1 has
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a slow convergence toward the true covariance matrix but it
converges toward it.
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Fig. 1. Consistency of Č estimator when C = T
((
ρ0, . . . , ρm−1

)T)
with

ρ = 0.7 and c = 0.2 for Student-t distributed m-vectors.

C. Signal Subspace Rank Estimation

In this section, the observations Y are whitened by the
estimator Č presented above. We note Yw the whitened signal:

Yw = Č−1/2 Y = Č−1/2 M S + Rw , (4)

where Rw = Č−1/2 C1/2 X T1/2. Due to the fact that the
observations are polluted by the textures {τi}i∈[1,N ], the
number of sources can be estimated thanks to the distribution
of the eigenvalues of any Maronna’s M -estimator of the scatter
matrix of the observations Yw. Under the H0 hypothesis,
the chosen robust estimator Σ̌ is then defined as the unique
solution, if it exists, of the equation:

Σ =
1

N

N∑
i=1

u

(
1

m
rw

H
i Σ−1 rwi

)
rwi rw

H
i , (5)

where Rw = [rw1, . . . , rwN ] and u : [0, +∞) →[0, +∞)
nonnegative, continue and non-increasing (see [24] for details).
In order to evaluate the rank of the signal subspace, it is
possible to set a threshold on the eigenvalues of Σ̌ in a non-
RMT regime. But it is not so easy to analyze the behavior of
Σ̌ eigenvalues when N,m → ∞ using RMT classical tools
since the term u

(
1
m rw

H
i Σ̌−1 rwi

)
depends on rwi. So, we

have to find and deal with another useful mathematical object
having similar properties and behavior. Before proposing the
following theorem, here are some definitions:
• φ : x 7→ xu(x), increasing and bounded with

lim
x→∞

φ(x) = φ∞ > 1 where lim
N→∞

cN < φ−1∞ ,

• g : x 7→ x

1− cN φ(x)
, v : x 7→ u ◦ g−1(x),

• ψ : x 7→ x v(x) and γm is the unique solution (if it exists)

of
N∑
i=1

ψ(τi γ)

1 + cN ψ(τi γ)
= 1.

Theorem 2 (Convergence of Σ̌). With the definitions given
above, we have the following convergence∥∥∥Σ̌− Ŝ

∥∥∥→ 0 a.s. (6)

where the matrix Ŝ is defined by:

Ŝ
4
=

1

N

N∑
i=1

τiv (τi γm) xi x
H
i . (7)

Proof. Let us define Σ̂ as the unique solution of

Σ̂ =
1

N

N−1∑
i=0

τi u

(
1

m
τi x

H
i Σ̂−1 xi

)
xi x

H
i . (8)

As rwi = Č−1/2 C1/2√τi xi, it can be easily shown that

Σ̌ = Č−1/2 C1/2 Σ̂ C1/2 Č−1/2 . (9)

Equation (6) can be rewritten as∥∥∥Σ̌− Ŝ
∥∥∥ ≤ ∥∥∥Σ̌− Σ̂

∥∥∥ +
∥∥∥Σ̂− Ŝ

∥∥∥ . (10)

Concerning the second term of the right hand side of (10), it
is proven in [15] that the matrix Ŝ given by (7) is such that∥∥∥Σ̂− Ŝ

∥∥∥→ 0 a.s. (11)

With (9), the first term of right hand side of (10) can be
rewritten as:∥∥∥Σ̌− Σ̂

∥∥∥ ≤ ∥∥∥Č−1/2 C1/2 Σ̂ C1/2 Č−1/2 − Σ̂ C1/2 Č−1/2
∥∥∥

+
∥∥∥Σ̂ C1/2 Č−1/2 − Σ̂

∥∥∥ . (12)

After left and right factorizations, we obtain:∥∥∥Σ̌− Σ̂
∥∥∥ ≤ ∥∥∥Č−1/2 C1/2 − Im

∥∥∥∥∥∥Σ̂∥∥∥(∥∥∥C1/2 Č−1/2
∥∥∥+ 1

)
.

As ‖C‖ has a bounded support, ‖Č‖ is bounded too since its
eigenvalues support converges almost surely toward the true
distribution. Moreover, Theorem 1 has proved the consistency∥∥C− Č

∥∥→ 0 a.s. This ensures the proof.

In the paper [15], the threshold t =
φ∞ (1 +

√
c)2

γm (1− c φ∞)
has

been set to ensure that all the eigenvalues of the matrix Ŝ
beyond t correspond to sources. This threshold comes from
the upper bound of the support of the Marchenko-Pastur law
and details can be found in [15]. Thanks to Theorem 2, the
threshold t can be applied on eigenvalues of scatter matrix Σ̌
built on observations Yw = [yw1, . . . ,ywN ] in order to test
both hypothesis H0 and H1:

Σ̌ =
1

N

N∑
i=1

u

(
1

m
yw

H
i Σ̌−1 ywi

)
ywi yw

H
i . (13)

Let
{
λi(Σ̌)

}
i=[1,N ]

be the eigenvalues of Σ̌ sorted in descend-
ing order. As all sources are assumed to be independent, the
estimated number p̂ of sources that is the rank of the signal
subspace is given by p̂ = min

k
(λk > t).
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Fig. 2. Eigenvalues of the covariance matrices Σ̌ and Ŝ and the corresponding
threshold t (ρ = 0.7, m = 900, N = 2000, τ = inverse gamma, ν = 0.1).

III. RESULTS AND SIMULATIONS

This section exposes some results of the proposed method
to estimate the rank of the signal subspace, on simulated data.

A. Behavior of the eigenvalues on simulated CES noise

In Figure 2 are drawn the distribution of the eigenvalues
of S, the threshold t and the distribution of the eigenvalues
of Σ̌ for hypothesis H0. The chosen signal (m = 900,
N = 2000) is a CES Student-t noise correlated with a Toeplitz
matrix with parameter ρ = 0.7. In addition, we set the
function u with the inverse gamma distribution for τ . For the
corresponding Student-t distributed CES noise with parameter

ν, we have u : x 7→ 1 + ν

ν + x
. Hence, the threshold t is equal to

(1 + ν) (1 +
√
c)2

γm (1− c (1 + ν))
. For the following figures, ν is set to 0.1.

In this figure, the eigenvalue distribution is almost the same
than the one of S. The fixed-point M -estimator cancels the
influence of the texture τ on the X observations: Σ̌ is almost
equal to 1

NXXH as expected. If the noise is not whitened by
the proposed estimator Č and if the scatter matrix is directly
estimated with the Fixed Point estimator, noted Σ̌nw, the
threshold is clearly not greater than the largest eigenvalue of
Σ̌nw. This result is shown in Figure 3: this shows that the
proposed whitening process is very important when applying
this threshold.

B. Estimation of the number of sources on CES simulated
noise and real data

For simulated and correlated (ρ = 0.7) CES noise, the
{τi}i∈[1,N ] are inverse gamma distributed with parameter
ν = 0.1. In Figure 4 (m = 400 and N = 2000), p = 4
sources are added in the observations for a Signal to Noise
Ratio (SNR) varying from −50 to 50dB. In this figure, the
number of sources p̂ (mean of 4 trials) is estimated through
three methods: AIC, the non-whitened signal and the proposed
method. The proposed method starts to find sources from a

0 2 4 6 8
0

0.1

0.2

0.3

Histogram of Eigenvalues

Σ̌nw

Ŝ

Threshold t

Fig. 3. Eigenvalues of the covariance matrices Σ̌nw and Ŝ when the signal Y
has not been whitened and the corresponding threshold t (ρ = 0.7, m = 900,
N = 2000, τ = inverse gamma, ν = 0.1).

SNR equal to 10dB. For a greater SNR, whereas it systemat-
ically gives the correct number of sources, the other methods
overestimate it. In Figure 5 is drawn the same simulation but
for p = 16 sources. In Figure 5, the proposed estimator still
presents better performance than the others.
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p̂ with Σ̌nw

p̂ with Σ̌

p̂ with AIC method

p

Fig. 4. Estimation of the number p of sources (4 trials) embbeded in CES
correlated noise (m = 400, c = 0.2, p = 4 sources, ρ = 0.7) versus SNR.

Now we compare the results obtained with three different
methods on several real hyperspectral images found in public
access: Indian Pines, SalinasA from AVIRIS database and
PaviaU from ROSIS database. Let M1 be the proposed
method, M2 be the method consisting in thresholding the
eigenvalues of the Fixed-Point estimator without the whitening
step, and the usual AIC method. For the function u(.) corre-
sponding to Student-t distribution, we choose ν = 0.1. As we
do not have any access to the true distribution of the noise, an

empirical estimator of γ is used, γ̂ =
1

N

N∑
i=1

1

m
yHi Σ̌−1(i) yi,

where Σ̌(i) = Σ̌ − 1

N
u

(
1

m
yHi Σ̌−1 yi

)
yi y

H
i . Then [15]
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Fig. 5. Estimation of the number p̂ of sources (4 trials) embbeded in CES
correlated noise (m = 400, c = 0.2, p = 1 source) versus SNR.

TABLE I
ESTIMATED p FOR DIFFERENT HYPERSPECTRAL IMAGES.

Images Indian Pines SalinasA PaviaU Cars
p 16 9 9 6

p̂ M1 11 9 1 3
p̂ M2 220 204 103 1
p̂ AIC 219 203 102 143

shows that γ − γ̂ → 0 a.s.. The results are summarized in
table I. On each image, the result tends to be better than those
of classical methods.

IV. CONCLUSION AND PERSPECTIVES

In this article devoted to the model order selection of
sources embedded in correlated CES noise, we have first
proposed a Toeplitz-based covariance matrix estimator of the
correlated noise and proved its consistency. To deal with the
CES texture, any M-estimator can then be used to estimate
the correct structure of the scatter matrix built on whitened
observations. A Random Matrix Theory-based model order
selection can therefore be applied on the corresponding scatter
matrix eigenvalues to correctly separate sources from the
noise. We have applied successfully this general technique to
simulated correlated CES noise and we also have shown that
this method provides interesting and encouraging results on
several hyperspectral images containing known sources. This
method can be generally applied for any model order selection
problems (radar clutter rank estimation, sources localization
or any hyperspectral problems such as anomaly detection or
linear/non-linear unmixing techniques).
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