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ABSTRACT

Tensor decomposition is an important tool for many applica-
tions in diverse disciplines such as signal processing, chemo-
metrics, numerical linear algebra and data mining. In this
work, we focus on PARAFAC and Tucker decompositions of
three-way tensors with non-negativity and/or sparseness con-
straints. By using an all-at-once optimization approach, we
propose two decomposition algorithms which are robust to
tensor order over-estimation errors, a desired practical prop-
erty when the tensor rank is unknown. Different algorithm
versions are proposed depending on the desired constraint (or
property) of the tensor factors or the core tensor. Finally, the
performance of the algorithms is assessed via insightful sim-
ulation experiments on both simulated and real-life data.

Index Terms— CANDECOMP/PARAFAC, Tucker de-
composition, all-at-once approach, sparsity, non-negativity

1. INTRODUCTION

Tensor decomposition, as an extension of matrix decomposi-
tion to multi-way array, proves its important role on various
applications in signal processing [1], chemometrics [2], nu-
merical linear algebra [3] and data mining [4].

Two widely-used tensor decompositions are the Parallel
Factor Analysis (PARAFAC) model and Tucker model one
because they can be considered as generalizations of the Sin-
gular Value Decomposition (SVD) for multiway arrays. De-
pending on particular applications, one may choose models
other than the above [1,3]. However, in this paper, when we
refer to tensor decomposition, we focus only on these two
models.

To date, various methods have been introduced and devel-
oped for computing tensor decomposition. We can classify
them into three main approaches: alternating approach, gen-
eral optimization approach and algebraic approach. The alter-
nating approach optimizes one factor at each step while keep-
ing the others fixed. The general optimization approach casts
the tensor decomposition problem into a nonlinear equation
problem and then solve it using standard optimization tools,
such as gradient methods. In a different aspect, as its name re-
veals, the algebraic approach aims to solve the tensor decom-
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position problem by using only algebra operators. We refer
the reader to [5, 6] for a comparison of different algorithms
for PARAFAC decomposition.

For a long time, the alternating approach is considered as
the “workhorse” one because of its simplicity and relative effi-
ciency. However, an all-at-once optimization framework [6],
which has been recently proposed, has been reported to be as
accurate as alternating-based algorithms while being more ro-
bust in the over-factoring case!. While estimating the rank of
a tensor is NP-complete [3] and still an open problem, robust-
ness is a desirable characteristic.

Moreover, among various constraints, two popular ones
are non-negativity and sparsity because many problems come
naturally with them, such as in text, image, and EEG signal
analyses. As a result, many tensor decomposition algorithms
with non-negativity and sparseness constraints have been pro-
posed. We refer the reader to [1, 3, 7] for comprehensive re-
view. For PARAFAC, imposing a non-negativity constraint,
when applicable, not only improves the physical interpreta-
tion [7] but also helps to avoid diverging components [8]. En-
forcing non-negativity and sparsity on factors and/or the core
tensor also helps to improve the uniqueness of the Tucker
decomposition [9]. However, as will be indicated in the se-
quel, even enforcing non-negativity and sparsity on factors,
the state-of-the-art algorithms are not robust to over-factoring.
Our work aims to overcome this shortcoming by bring these
two desired characteristics together. In particular, we would
like to have algorithms which are robust with over-factoring
and easy to use with either non-negativity constraint or both
non-negativity and sparseness constraints.

Our contributions are two folds: First, we tailor the all-
at-one optimization framework [6] to impose non-negativity
constraint or both non-negativity and sparseness constraints
for tensor decomposition. Second, we apply this framework
to two case studies: (i) sparse non-negative PARAFAC de-
composition, and (ii) sparse non-negative Tucker decompo-
sition. As shown in the simulation section, our sparse non-
negative algorithms are as accurate as state-of-the-art algo-
rithms but more robust to over-factoring. We would like to
highlight that the all-at-once optimization approach has been
applied to the PARAFAC decomposition with missing en-
tries [10], coupled matrix/tensor decomposition without/with

Over-factoring means that for example in PARAFAC we choose a tensor
rank is larger than its true value.
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missing value [11]. However, to our best knowledge, sparse
non-negative PARAFAC and Tucker ones have not been pro-
posed in the context of all-at-one optimization.

Notations: We follow the notations used in [3]. Calli-
graphic letters are used for tensors (A, 5, ...). Matrices,
vectors (both row and column), and scalars are denoted by
boldface uppercase, boldface lowercase, and lowercase re-
spectively; for example A, a, and a. Element (4,7, k) of a
tensor A € R*7*K i symbolized as a;;x, element (i, j) of
a matrix A € R7*7 as a;;, and i-th entry of a vector a € R!
as a;. Moreover, A ® B defines the Kronecker product of
A and B, A ©® B the Khatri-Rao (column-wise Kronecker)
product, A * B the Hadamard product which is the element-
wise matrix product, a o b the outer product of a and b, and
[A]" = max{0, a;;}, for all ¢, 7, is a positive orthant projec-
tion of a real-valued matrix A. A non-negative matrix A is
denoted by A > 0, where its entries satisfy a;; > 0 for all
i, 7.

2. TENSOR OPERATORS AND MODELS
In this section, we introduce some basic tensor operators and
models that we will use later. Before starting with tensor op-
erators, we introduce some useful matrix product equality

(A®B)(C®D) = (AC)® (BD)
(AOB)T(A®B) = (ATA) = (BTB)
vec(ABCT) = (C® A) vec(B),

where vec() performs vectorization of a matrix that stacks the

columns of the matrix into a vector (e.g., given B € R'*7,
T ™7T

vec(B) = [by, -+, by]").

Basic tensor operators:

Three mode-n unfoldings of a tensor X' € R/*7/*K are

Xa) [ Xylij+e-1)0 = Tijk
X2 [X(2)]j,i+(k71)l = Tijk
X @) [ X@ylkit-nr = Tijk-

The inner product of two same-size tensors X, ) €
RIXI*K g defined as

<X3’=

HM~

J K
3% 3} st
j=1k=1

> = |X[>
K is defined as

As a consequence, we have < )
The [; of a tensor X’ € RI*Jx

I J K
X0 =D >0 D ekl
im1j=1k=1

PARAFAC and Tucker models:
The PARAFAC decomposition of X € RI*/*K can be
defined as

R
Xm[[A,B,C}]EZaTob,,ocT, (1)
r=1
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which is the sum of R rank-one tensors, with 12 being the ten-
sor rank. The set of vectors, {a,.}, {b,}, {c,} can be grouped
into the so-called loading matrices A = [a; ...ag] € CI*E,
B =[b;...bgr] e C”*E and C = [c;...cp] € CEXE,
Equation (1) can also be formulated in matrix form using
mode-n unfolding as

X~ A(COB)" 2
Xz ~B(COA)" 3)
X3 ~ CBOA). 4

The PARAFAC decomposition is generically unique (up to
scales and permutation) if it satisfies the following condi-
tion [12]:

2R(R—1)<I(I-1)K(K—1), R<.J

On the other hand, the Tucker decomposition of ) € RIxJxK

can be written as follows:

P Q R
~ [G:A,B,C] EZZngqrapobqocm (5)
p=1g=1r=1

where A = [a;...ap] e CI*P B = [b1...bg] € Cc/xQ
and C = [c;...cg] € CE*! are the factor matrices and
G € CP*@* R i called core tensor. Matrix and vector forms
of (5) can be presented as

Y1) ~ AG(;)(C®B)" (6)
Ym*BGm@®AF ©)
Y3 ~ CG5(B®A)T ®)

~ (C®B®A)g, )

where y = vec()) and g = vec(G). The “standard” Tucker
model sets column-wise orthogonal constraints on the factors.
Those constraints simplify the calculation when implement-
ing the algorithms but are, in general, optional. In contrast
to the PARAFAC model, the Tucker model is not unique ex-
cept when necessary constraints are added, for example both
sparsity and non-negativity constraints.

3. ALL-AT-ONCE OPTIMIZATION WITH
NONNEGATIVE AND SPARSE CONSTRAINTS

The all-at-once optimization approach [6] includes three
steps:

Step 1: Define a cost function f and variable x.

Step 2: Compute the gradient V f (x).

Step 3: Optimize using nonlinear conjugate gradient.

The special point comes from variable x which is a con-
catenation of the vectorized forms of the loading matrices for
PARAFAC, or vectorized forms of the loading factors and the
core tensor for Tucker (see next sections for more details).

To impose the non-negativity constraint or both the non-
negativity and sparseness constraints, we propose to replace
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Step 1: Define a cost function f and variable x.

Step 2: Compute the gradient V f(x).

Step 3: Optimize using first order projected gradient.
Table 1: All-at-once optimization with non-negativity constraints

the nonlinear conjugate gradient by a first-order projected gra-
dient method. This framework is simple and easy to imple-
ment. Moreover, it allows us to solve a large class of prob-
lems (e.g., different models) with non-negativity and sparse-
ness constraints. When the sparseness constraint comes after
the non-negativity constraint, it is straightforward to calcu-
late the gradient of variable with /; norm following the rule
a”a% = 1 where 1 is a vector? whose entries are one. Thus,
we can use the proposed framework without modifying Step 3
in the optimization algorithm. A summary of the framework
is presented in Table 1. We adapt the projected gradient
algorithm [13] to use in Step 3. We choose this algorithm
because it is well-understood and the results for convergence
are available [14]. The algorithm is a variant of the projected
gradient algorithm using the Armijo rule along the projection
arc [15]. In particular, the step size in the following update
step:

xFHD — [xF — a, V()] T (10)

should be such that the following condition is satisfied:
FOMY) = f(xF) <oV TN =X, ap

where o, = 5% and t, is the first integer which makes (11)
hold and o is a pre-defined positive scalar. The main idea
now is to reduce the search time of oy by using ax—1 as an
initial guess. This search strategy stems from the fact that o,
and o may be close. Thus we can increase or decrease
until the largest 5% that satisfies (11) is found. A summary
of the projected gradient is presented in Table 1.

For stopping condition, we terminate the algorithm if
I[VFE*)]T| < €[V (x")]| or if the algorithm reaches a
maximum number of iterations. The former means that we
stop if a solution at the k-th step x* is close to a stationary
point where € > 0 is a small user-defined number. The latter
is to avoid a too-long run-time.

4. FIRST CASE STUDY: PARAFAC MODEL

In this section, we define the cost function for the sparse non-
negative PARAFAC decomposition as

minimize f(A,B,C)
subjectto A >0,B>0,C>0

where
1
+ AafAllr + A5[Blli + Ac|Cllr - (12)

2In this paper, we will “over-use” notation 1 which can be vector or ma-
trix depending on the variable size
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Algorithm 1: Modified projected gradient [13].
Input :xpe Ry
Output: x € R, such that (11) is minimized

1 initialization for 8 € (0,1),0 € (0,1), ap = 1
2 while a stopping condition is not met do

3 if (11) holds, then

4 repeat

5 Q< ak/ﬁ

6 X [x — ap V(M

7 until (11) does not hold, or X = x;
8 else

9 repeat

10 ap «— apf

1 X [x — ap Vf(xF)]T

12 until (117) holds, or x = x;

13 end

14 end

and A4, Ap and \¢ are penalty terms which control the regu-
larization strength. We can write out three equivalent expres-
sions of (12) in terms of unfolded tensors as follows:
1 T2
J(A.B.C) = 5|X() ~ A(COB)}
+Aa[AlL+AsIBlr + Ac|Cly (13)
1
J(A.B,C) = 5 |Xp) ~ B(COA)|}
+Aa[AlL+AsIBlr+ Ac|Cly (14)
1
+AalAlL+As[Bly + AcCli. (15)
These expressions are convenient when computing the partial

derivatives corresponding to variables A or B or C. To be
specific, we have

,
g}i = X1 (COB) + A(CTC+BTB) + A\41 (16)
O X (COA)+BCTCATA) +As1 ()
0

a_(J; =-X3(BOA)+CB"BxATA) + A1, (18)

We then obtain the gradient by concatenating their vectorized
forms as

vec(—f)T

Vf(x)= A , vee(

o o 2yt
eS| L a0

where x = [vec(A)T, vec(B)T, vec(C)T]T. Finally, we use
this gradient in Step 2 of the framework given by Table 1. We
refer to this implementation as the All-at-once optimization
based Sparse Nonegative PARAFAC (ASNP) algorithm.



2016 24th European Signal Processing Conference (EUSIPCO)

5. SECOND CASE STUDY: TUCKER MODEL

Similar to the PARAFAC case, we present a sparse non-
negative Tucker decomposition. Depending on applications,
we can choose to impose a sparseness constraint on sev-
eral factors and the core tensor, or only the core tensor. If
dimensions of the core tensor are smaller than those of the
underlying tensor, we have the standard Tucker model. Other-
wise, we have a tensor dictionary learning problem. Consider
the following cost function:

minimize h(A,B,C,G) (20)
subjectto A>0,B>0,C>0,G=>0
where
1
h(AaB? C7 g) = §Hy - [[g7 Ava CHH%

+ Al + 2Bl + Ac|Cl + AclGln 21

and A4, Ap, A\¢ and \g are penalty terms of A, B, C and
G respectively. We can write out four equivalent expressions
of (21) in terms of unfolded tensors and vectorized form as
follows:

1

+AalAlL+ s HBHl + )\CHCHl +Xa|Gayli 22)

1
h(AB,C,G) = 5[Y 5 — BG(3(C Q@A) %
+ M| Al + A5|Bll1 + Ac|Clls + A6 |Gyl (23)
1
h(A.B,C,G) = §HY(3) —CG(B®A) |

+ A4 Al + A By + AclCli + Ac[ Gz |1 (24)
1
+AaAlL +As|Bl1 + Ac|Cli + Aclgli-  (25)

The partial derivatives of A, B, C and G can then be obtained
as

oh
A = Xn(Co® B)G{,

+ AG(l)(CTC ®B'B)G{;) + \al  (26)
oh
B 2(C®A)G,

+ BG(Q)(CTC ®ATA)G, + sl (27)
oh

+CG3(B"BRQATA)G() +Acl  (28)
g—g =—(C"®B"®A")g

+(CTC®BTB®ATA)g + \¢1. (29)
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al| B o maxIter € Aa | AB | Ao | A
1]0.1]0.01 1000 107* 1 0.01 | O 0 | N/A
110.1]0.01 1000 10~4 0 0 0 0

Table 2: Particular parameters set in our experiment.

By concatenating their vectorized form, we attain

V1)

Oh \T Oh TT
vee( Z5)7,(2)T], (30)

Vh(x) = [veC( ST vee(Sh)T

D
w2

where x = [vec(A)T, vec(B)T, vec(C)T, g”]”. We use the
above gradient in place of the gradient in Step 2 of the frame-
work of Table 1. We refer to this implementation as the All-at-
once optimization based Sparse Non-negative Tucker (ASNT)
algorithm.

6. SIMULATION

In this section, the performance of the proposed algorithms
are assessed. We implement the considered algorithms using
the Matlab Tensor Toolbox in Matlab [16]. Parameters of the
algorithms are summarized in Table 2. Because of limited
space, we select two experiments to compare our algorithms
with several available algorithms from literature. In all ex-
periments, we keep all default parameters of the comparing
algorithms.

To assess the accuracy of ASNP? and its robustness, we
compare our algorithm in over-factoring case with two state-
of-the-art algorithms: CPOPT [6] from the Tensor Toolbox
and the Non-negative Alternating Least-Squares (NALS-
PARAFAC) from the N-way Toolbox [17]. In particular,
we use amino acids fluorescence data from [2]. This data
is a third-order tensor corresponding to 5 chemical samples
measured by fluorescence at 61 excitation and 201 emission

wavelengths. The true rank of the tensor is three.  Since
PARAFAC is unique up to scales and permutation, we fol-

low the normalization method proposed in [2]. Particularly,
we normalize the loading vectors of the second and third
modes and keep the variance of the corresponding vectors in
the first mode. Then we arrange them in descending order
of amplitude. This normalization method was also used for
CPOPT when comparing with the CP-ALS algorithm in [6].
As shown in Figure 1, our method is accurate and more robust
than CPOPT and NALS-PARAFAC.

To assess the performance of ANST, we randomly gener-
ate a 20 x 20 x 20 non-negative tensor following the Tucker
model (5). The core tensor size is set to 5 x 5 x 5. Then,
the noisy observation is Y = ) + m\‘%‘h/\/’ where N () is
the noise whose size is identical to that of ) and parameter 7,
controls the noise level. We compare performance of ANST
with the Block Coordinate Descent based Tucker (BCDT)
in [18]. The relative error was used as the performance cri-
terion o = W where Y. 1s the estimated tensor.
The average result obtained from 100 Monte Carlo simulation

3With chosen parameters, the result of the ASNP algorithm for the non-
negativity constraint is almost identical to that for both the sparseness and
non-negativity constraints. Thus, we decided to present the latter only.
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(a) Our method (b) CPOPT method [6] (c) NALS-PARAFAC method [17]
Fig. 1: Illustration of loading components estimated from three methods for overfactoring case, R = Rirue + 1.
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Fig. 2: Performance comparison of ANST and BCDT.
runs is shown in Figure 2. We can see that the performance of
ANST is slightly better than that of BCDT. However, we con-
firm that our algorithm is slower than BCDT and our future
work will focus on improving this drawback.

7. CONCLUSION
We have introduced in this paper two new tensor decompo-
sition algorithms that take into account the sparsity and non-
negativity of the factors. Compared to other existing methods,
the proposed solution has the advantages of simplicity and ro-
bustness to tensor-rank estimation errors. Simulation results
have been provided to illustrate the effectiveness and robust-
ness of the algorithms for both simulated and real-life data.
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