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Abstract—We develop a new efficient method for designing
unimodular waveforms with good auto- and cross-correlation
properties for multiple-input multiple-output (MIMO) radar. Our
waveform design scheme is conducted based on minimization of
the integrated sidelobe level of designed waveforms, which is
formulated as a quartic non-convex optimization problem. We
start from simplifying the quartic optimization problem and then
transform it into a quadratic form. By means of the majorization-
minimization technique that seeks to find the solution of a
corresponding quadratic optimization problem, we resolve the
design of waveforms for MIMO radar. Corresponding algorithms
that enable good correlations of the designed waveforms and
meanwhile show faster convergence as compared to their coun-
terparts are proposed and then tested.

I. INTRODUCTION

Waveform design has become a research field of significant
interest in multiple-input multiple-output (MIMO) radar since
the emergence of MIMO radar concept [1]–[5]. The application
of waveform design plays an important role in MIMO radar
(also in single-input single-output radar) signal processing
because high-quality waveform can guarantee good localization
accuracy [6], high resolution [7], and improved delay-Doppler
ambiguity of the potential target [8]. Moreover, in harsh
environment such as in the presence of heterogeneous clutter
and active jamming, robust or adaptive waveform designs are
capable of suppressing them [9]. One of the most important
factors that determine the quality of designed waveforms is
the correlation property, i.e., the auto- and cross-correlations
between different time lags of the waveforms. Perfect or low
waveform correlations mean that the waveforms launched from
radar platform are uncorrelated to any non-zero time-delayed
version of themselves, which ensures that the target at the range
bin of interest can be easily extracted after matched filtering,
and the sidelobes from other range bins have almost no effect on
its attenuation. Despite the application of correlated waveforms
in MIMO radar [8], [10], [11], uncorrelated waveforms are
still the most preferable and they can be easily converted to
correlated ones by weighting on them. On the other hand,
unimodular waveforms are still preferable compared to other
counterparts due to their constant energy at any time lag, which
significantly reduces the cost of hardware.

There has been an extensive literature on waveform design
for radar applications [12]–[19]. The integrated sidelobe

level (ISL), which characterizes the correlation properties of
waveforms and evaluates the accumulated sidelobes at all
non-zero time lags, is the most commonly used metric. To
design waveforms via ISL minimization, the work of [13]
has proposed to produce unimodular waveforms in frequency
domain using a cyclic procedure of iterative calculations. The
methods associated with ISL and weighted ISL minimization
therein were named CAN and WeCAN, respectively. These
methods were later extended to MIMO radar case based on the
same idea of using cyclic procedure of iterative calculations
[5]. The work of [18] dealt with the same ISL minimization
problem as CAN for designing a single waveform but solved
it via majorization-minimization (MaMi) technique [20]. This
technique has previously been used in [17] where the design
of multiple waveforms were implemented from information-
theoretic perspective. The recent work of [19] has extended
[18] to the case of multiple waveforms.

In this paper, we develop an efficient method for designing
a set of unimodular waveforms with good auto- and cross-
correlation properties, which can be applied to MIMO radar. We
conduct the waveform design based on ISL minimization of the
waveforms. Using proper modeling and some transformations,
we formulate the ISL minimization based design as a quartic
non-convex optimization problem. We show how to simplify
the quartic optimization problem and then transform it into
a quadratic form. By means of the MaMi technique which
majorizes the objective function of the quadratic optimization
problem and seeks to find the corresponding solution via itera-
tive calculations, we resolve the formulated waveform design
for MIMO radar. Corresponding algorithms that enable good
correlations of the designed waveforms and meanwhile show
faster convergence as compared to the existing counterparts
are proposed and tested in terms of simulations.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider a MIMO radar equipped with M transmit antenna
elements from which a set of M unimodular waveforms,
denoted by the P ×M matrix Y , [y1, . . . ,yM ], is launched
within a pulse duration. Here ym, m ∈ {1, . . . ,M} stands for
the P × 1 emitted waveform vector associated with the mth
antenna and P is the code length of each waveform. Let the
pth (p ∈ {1, . . . , P}) element of ym that is associated with the
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pth sub-pulse be ym(p) = ejψm(p) where ψm(p) is an arbitrary
phase value ranging between −π and π. The main issue of
the waveform design for MIMO radar lies in synthesizing
sequences {ym(p)}M,P

m=1,p=1 which have good auto- and cross-
correlation properties.

The ISL of the waveforms {ym(p)}M,P
m=1,p=1 is expressed as

ζ =
M∑
m=1

P−1∑
p=−P+1
p6=0

|rmm(p)|2 +
M∑
m=1

M∑
m′=1
m′ 6=m

P−1∑
p=−P+1

|rmm′(p)|2 (1)

where rmm′(p) ,
∑P
k=p+1 ym(k)y∗m′(k − p), m,m′ ∈ {1,

. . . ,M}; p ∈ {1, . . . , P − 1} stands for the cross-correlation
level of the mth and m′th waveforms at the pth time lag, and
|·| and (·)∗ are modulus and conjugation operators, respectively.
Note that the first component of the sum on the right hand side
of (1) stands for the ISL associated with auto-correlations and
the latter represents the ISL associated with cross-correlations.

Using matrix expressions, the ISL ζ in (1) can be rewritten
into the following compact form

ζ =
P−1∑

p=−P+1

‖Rp − P IMδp‖2 (2)

where the M × M waveform correlation matrix Rp, p ∈
{−P + 1, . . . , 0, . . . , P − 1} is constructed as

Rp ,


r11(p) r12(p) . . . r1M (p)
r21(p) r22(p) . . . r1M (p)

...
...

. . .
...

rM1(p) . . . . . . rMM (p)

 (3)

δp is the Kronecker delta function whose value is 1 only when
p = 0 while otherwise it is 0, IM is the M × M identity
matrix, and ‖·‖ stands for the Frobenius norm of a matrix.

Transforming (2) into frequency domain and performing
some derivations, the ISL can be expressed as [5]

ζ =
1

2P

2P∑
p=1

∥∥˜̃y(ωp)˜̃yH
(ωp)− P IM

∥∥2 (4)

where ωp , 2π
2P p and ˜̃y(ωp) ,

∑P
n=1 ỹne

−jωpn with ỹn
constructed by the nth row of the waveform matrix Y which
is explicitly expressed as ỹn , [y1(n), . . . , yM (n)]T. Here
(·)T and (·)H are transpose and conjugate transpose operators,
respectively.

Expanding the squared norm in (4), the ISL can be expressed
in the following form

ζ =
1

2P

2P∑
p=1

(∥∥˜̃y(ωp)∥∥4 − 2P
∥∥˜̃y(ωp)∥∥2 + P 2M

)
(5)

which can be further rewritten as the following compact form

ζ =
1

2P

2P∑
p=1

((
yHApA

H
p y
)2

−2P
(
yHApA

H
p y
)
+ P 2M

)
(6)

where y , vec(Y) =
[
yT
1 , . . . ,y

T
M

]T
is the MP × 1

vectorized version of the waveform matrix Y, Ap , IM ⊗ ap
is an MP ×M matrix with ap ,

[
1, ejωp , . . . , ej(P−1)ωp

]T
,

and vec(·) and ⊗ are respectively vectorization and Kronecker
product operators. Note that the results ˜̃y(ωp) = AH

p y and

‖˜̃y(ωp)‖2 = ˜̃y
H
(ωp)˜̃y(ωp) have been used to obtain (6) from

(5).
We can finally express the waveform design problem

associated with ISL minimization as

min
y

ζ s.t. |y(p′)| = 1, p′ = 1, . . . ,MP. (7)

III. WAVEFORM DESIGN VIA MAMI

In order to solve (7) efficiently, we start by simplifying (6).
To begin, we note that the following train of equalities

2P∑
p=1

(
yHApA

H
p y
)
= yH

2P∑
p=1

(
ApA

H
p

)
y

= ‖y‖2 = 2MP 2 (8)

holds because of the property
∑2P
p=1

(
ApA

H
p

)
= 2P IMP .

Therefore, the latter two components of the sum in (6) are
immaterial for optimization. After ignoring them in (6), the
corresponding optimization problem can be rewritten as

min
y

2P∑
p=1

(
yHApA

H
p y
)2

s.t. |y(p′)| = 1, p′ = 1, . . . ,MP. (9)

The objective function in (9) takes a quartic form with respect
to y, and it can be transformed to the following form

2P∑
p=1

(
yHApA

H
p y
)2

=
2P∑
p=1

tr2
{
ỸHApA

H
p

}
=

2P∑
p=1

vecH
(
Ỹ
)
vec
(
ApA

H
p

)
vecH

(
ApA

H
p

)
vec
(
Ỹ
)

, vecH
(
Ỹ
)
Φvec

(
Ỹ
)

(10)

where Ỹ , yyH is an MP × MP rank-1 matrix, Φ ,∑2P
p=1 vec

(
Ap AH

p

)
vecH

(
ApA

H
p

)
is an M2P 2 ×M2P 2 ma-

trix, and tr{·} stands for the matrix trace. The properties
yHApA

H
p y = tr

{
ỸHApA

H
p

}
= vecH

(
Ỹ
)
vec
(
ApA

H
p

)
have

been used in the derivations of (10). Therefore, the optimization
problem (9) can be further rewritten as

min
Ỹ

vecH
(
Ỹ
)
Φvec

(
Ỹ
)

(11a)

s.t. Ỹ = yyH (11b)
|y(p′)| = 1, p′ = 1, . . . ,MP. (11c)

Before applying majorization to the objective function (11a),
we present the following result to be used later [18].

The quadratic function xHQx is majorized by the function
xHGx+2<

(
xH(Q−G)x0

)
+xH

0 (G−Q)x0 at x0 when the
generalized inequality G � Q is satisfied. Here G and Q are
Hermitian positive semidefinite matrices.
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It can be shown that the largest eigenvalue of Φ, denoted
by λmax(Φ), equals 2MP 2. We omit the proof because of the
space limitation. Therefore, we can select G , λmax(Φ)IM2P 2

to guarantee the generalized inequality G � Φ. Using the
above-mentioned majorization result, the objective function
(11a) can be majorized as

g1
(
Ỹ, Ỹ(k)

)
= λmax(Φ)vecH

(
Ỹ
)
vec
(
Ỹ
)

+ 2<
{
vecH

(
Ỹ
)
(Φ− λmax(Φ)IM2P 2)vec

(
Ỹ(k)

)}
+ vecH

(
Ỹ(k)

)
(λmax(Φ)IM2P 2 −Φ)vec

(
Ỹ(k)

)
(12)

where the matrix Ỹ(k) , y(k)
(
y(k)

)H
is obtained at the kth

iteration and <{·} denotes the real part of a complex value.
Note that vecH(Ỹ)vec(Ỹ) = ‖y‖4 =M2P 2. Hence, both the
first and third components of the sum in (12) are constant
terms which are immaterial for optimization. The problem (11)
can be therefore rewritten as

min
Ỹ

vecH
(
Ỹ
)(

Φ− λmax(Φ)IM2P 2

)
vec
(
Ỹ(k)

)
(13a)

s.t. Ỹ = yyH (13b)
|y(p′)| = 1, p′ = 1, . . . ,MP. (13c)

Using the properties vec(Ỹ) = vec
(
yyH

)
= (yT⊗IMP )

Hy

and vec
(
ApA

H
p

)
=
(
AT
p ⊗ IMP

)H
vec
(
Ap

)
, and also substi-

tuting the explicit expressions of Φ and λmax(Φ), the objective
function (13a) can be further transformed as

vecH
(
Ỹ
)(

Φ− λmax(Φ)IM2P 2

)
vec
(
Ỹ(k)

)
=

2P∑
p=1

(
yH(yT ⊗ IMP )

(
AT
p ⊗ IMP

)H
vec
(
Ap

)
vecH

(
Ap

)
×
(
AT
p ⊗ IMP

)(
(y(k))T ⊗ IMP

)H
y(k)

)
− 2MP 2yH

(
yT ⊗ IMP

)(
(y(k))T ⊗ IMP

)H
y(k)

=
2P∑
p=1

yH
(
(yTA∗p)⊗ IMP

)
vec
(
Ap

)
vecH

(
Ap

)((
AT
p (y

(k))∗
)

⊗ IMP

)
y(k) − 2MP 2yH

(
yT(y(k))∗

)
y(k) (14)

=
2P∑
p=1

yHAp

(
(y(k))HApA

H
p y(k)

)
AH
p y

− 2MP 2yH
(
y(k)(y(k))H

)
y (15)

where the mixed product property of Kronecker product and
the property

(
(yTA∗p)⊗ IMP

)
vec
(
Ap

)
= ApA

H
p y are used

to derive (14) and (15), respectively.
Stacking Ap, p = 1, . . . , 2P into a new MP ×2MP matrix

A, i.e., A , [A1, . . . ,A2P ], (15) can be further rewritten in
the following compact form

2P∑
p=1

yHAp

(
(y(k))HApA

H
p y(k)

)
AH
p y

− 2MP 2yH
(
y(k)(y(k))H

)
y

= yH
(
AΛ(k)AH − 2MP 2y(k)(y(k))H

)
y (16)

where the 2MP × 2MP diagonal matrix Λ(k) is expressed as

Λ(k) , diag
{∥∥aH

1 Ỹ(k)
∥∥21T

M , . . . ,
∥∥aH

2P Ỹ(k)
∥∥21T

M

}
(17)

with 1M denoting a vector whose M elements are all ones.
Therefore, the optimization problem (13) can be rewritten as

min
y

yH
(
AΛ(k)AH − 2MP 2y(k)(y(k))H

)
y (18a)

s.t. |y(p′)| = 1, p′ = 1, . . . ,MP. (18b)

Applying the previous majorization result to the first com-
ponent of the quadratic objective function (18a) and selecting
G , µ

(k)
maxAAH with µ

(k)
max , max{‖aH

1 Ỹ(k)‖21T
M , . . . ,

‖aH
2P Ỹ(k)‖21T

M}, we guarantee that G � AΛ(k)AH. There-
fore, the objective function (18a) is majorized as

g2
(
y,y(k)

)
= µ(k)

maxy
HAAHy + 2<

{
yH
(
A(Λ(k) − µ(k)

maxI2MP )A
H

− 2MP 2y(k)(y(k))H
)
y(k)

}
+ (y(k))H

(
2MP 2y(k)

× (y(k))H −A(Λ(k) − µ(k)
maxI2MP )A

H
)
y(k). (19)

Note that AAH =
∑2P
p=1 ApA

H
p = 2P IMP and yHy =

(y(k))Hy(k) = ‖y‖2 = MP . Hence the first and third
components of the sum in (19) are immaterial for optimization.
The optimization problem (18) can be finally simplified as

min
y

yHz(k)

s.t. |y(p′)| = 1, p′ = 1, . . . ,MP. (20)

where z(k) , −AΛ(k)AHy(k) +2µ
(k)
maxPy(k) +2M2P 3y(k).

Due to the constant modulus property of y, (20) is equivalent
to the following optimization problem

min
Y

∥∥Y − Z(k)
∥∥2

s.t. |[Y]m,p| = 1, m = 1, . . . ,M ; p = 1, . . . , P (21)

where

Z(k) , −AΛ(k)AHY(k) + 2µ(k)
maxPY(k) + 2M2P 3Y(k)

(22)

with the waveform matrix Y(k) achieved at the kth iteration
and [·]m,p standing for the (m, p)th element of a matrix. The
solution of (21) can be found in the following closed form

[Y]m,p = e
jarg

(
[Z(k)]

m,p

)
, m = 1, . . . ,M ; p = 1, . . . , P.

(23)

Note that (21) and (22) are written into matrix forms which
facilitate our proposed algorithm in the following. Based on the
above derivations, we propose an original algorithm for the ISL
minimization problem (7) via MaMi technique summarized in
Algorithm 1. To speed up the convergence of this algorithm, we
can resort to accelerated schemes. For example, the schemes in
[18] which lead to efficient accelerated methods can be used.
Here we summarize also our algorithm accelerated by fix-point
scheme in Algorithms 2. We refer interested readers to [18]
for the proof of convergence.
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Algorithm 1 ISL minimization via MaMi

1: k ← 0, Y ← P ×M unimodular sequence matrix with
random phases.

2: repeat
3: procedure ISLMAMI

(
Y(k)

)
4: µ

(k)
max = max

{∥∥aH
p Ỹ(k)

∥∥2}2P
p=1

5:
Z(k) = −AΛ(k)AHY(k) + 2µ(k)

maxPY(k)

+ 2M2P 3Y(k)

6:

[
Y(k+1)

]
m,p

= e
jarg

(
[Z(k)]

m,p

)
, m = 1, . . . ,M ;

p = 1, . . . , P.

7: k ← k + 1

8: end procedure
9: until convergence

IV. SIMULATION RESULTS

In our simulations, we compare the performance of our
proposed waveform design algorithm with that of CAN (see
[5]) and the method in [19] (named as CANSong), and also
present correlation properties of the waveforms generated
by them. We generate unimodular sequences with random
phases as the initialization for each tested design, and the
same initialized sequence is used when conducting comparison.
The basic method of our work, i.e., Algorithm 1, and that
of [19] (see Algorithm 3 therein) converge more slowly than
the corresponding accelerated algorithms while giving similar
minimized ISL performance. Therefore, we use the fix-point
accelerated scheme. Two stopping criteria are employed in the
conducted comparisons. One is the absolute ISL difference
between the current and previous iterations normalized to the
initial ISL, whose threshold is set to be 10−8. The other is
the norm of the difference between the waveform matrices
obtained at the current and previous iterations, whose threshold
is set to be 10−3. All simulations for the tested methods are
conducted based on the same hardware and software platforms,
and are averaged by running 50 independent trials.

In the first example, we evaluate the convergence properties
(i.e., running time versus code length) of the three tested
waveform designs using the first (ISL based) stopping criterion.
The number of designed waveforms is M = 4, and the code
length P is varying from 20 to 200 with step size 20. Fig. 1
shows the performance comparison of the three waveform
design. It can be seen from Fig. 1(a) that our proposed design
and the design of [19] always outperform the CAN design in
convergence rate in terms of the consumed time. It costs our
proposed waveform design nearly the same running time as the
design of [19] to obtain optimized waveforms when the code
length is relatively smaller (i.e., from 20 to 80). However, our
proposed design behaves increasingly better than the method
of [19] when larger code length is selected, and indeed this
superiority becomes obvious when both the code length and the
number of waveforms are significantly large. Fig. 1(b) shows
the corresponding achieved ISL of the three tested waveform

Algorithm 2 ISL minimization via accelerated MaMi

1: k ← 0, Y ← P ×M unimodular sequence matrix with
random phases.

2: repeat
3: procedure ISLAFMAMI

(
Y(k)

)
4: Ŷ = ISLMaMi

(
Y(k)

)
5:

ˆ̂Y = ISLMaMi
(
Ŷ
)

6: ∆̂ = ŷ − y(k); ˆ̂∆ = ˆ̂Y + Y(k) − 2Ŷ

7: β = −‖∆̂‖/‖ ˆ̂∆‖
8: Z(k) = Y(k) − 2β∆̂ + β2 ˆ̂∆

9:

[
Ȳ(k)

]
m,p

= e
jarg

(
[Z(k)]

m,p

)
, m = 1, . . . ,M ;

p = 1, . . . , P.

10: while ISL
(
Ȳ(k)

)
> ISL

(
Y(k)

)
do

11: β ← (β − 1)/2

12: Z(k) = Y(k) − 2β∆̂ + β2 ˆ̂∆

13:
[Ȳ(k)]m,p = e

jarg
(
[Z(k)]

m,p

)
, m = 1, . . . ,M ;

p = 1, . . . , P.

14: end while
15: Y(k+1) = Ȳ(k)

16: k ← k + 1

17: end procedure
18: until convergence

designs. It can be seen from Fig. 1(b) that the three designs
nearly achieve the same ISL, where the results are shown with
overlapping graphic shapes. Indeed, the ISLs achieved by our
proposed design and that of [19] are better than that achieved
by the CAN algorithm, however, the difference is quite small
(less than 10−4 dB).

In the second example, we evaluate the convergence prop-
erties of the three tested designs using the second (waveform
based) stopping criterion. The number of waveforms is M = 2,
and the code length P is varying from 10 to 100 with step
size 10. Fig. 2 shows the performance comparisons of the
three waveform designs. Similar to Fig. 1, it can be seen from
Fig. 2(a) that both our proposed design and the design of [19]
outperform the CAN design in convergence rate with respect
to the consumed time, and again our proposed design behaves
increasingly better than that of [19] for larger code lengths. It
can also be seen from Fig. 2(b) that the obtained ISL of the
three tested designs are again quite close to each other, and the
corresponding difference is smaller. Compared to the previous
results, we remark that using the waveform based stopping
criterion to obtain a desired ISL for all these waveform designs
is generally faster than the case using the ISL based criterion.

In the third example, we present the correlation properties
of waveforms optimized by the three tested designs using the
ISL based stopping criterion. The corresponding waveform
design parameters are M = 2 and P = 256. The normalized
auto- and cross-correlations of the two designed waveforms are

2016 24th European Signal Processing Conference (EUSIPCO)

2238



2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

Code length

0

0.5

1

1.5

2

A
v
e

ra
g

e
 t

im
e

 (
s
e

c
o

n
d

s
)

CAN

CANSong

Proposed

(a) Running time versus code length.

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

Code length

35

40

45

50

55

A
c
h
ie

v
e
d
 I
S

L
 (

d
B

)

CAN

CANSong

Proposed

(b) Achieved ISL versus code length.

Fig. 1. Performance evaluation using the first stopping criterion.
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Fig. 2. Performance evaluation using the second stopping criterion.

shown in the sub figures of Fig. 3. It can be seen from Fig. 3
that the auto- and cross-correlations for the three tested designs
are close to each other, which coincides with the ISL results
in the previous two examples. The worst sidelobe level for
the auto-correlation is about −23 dB, while the worst sidelobe
level for the cross-correlations is around −20 dB.

V. CONCLUSION

An efficient method for designing multiple unimodular
waveforms with good correlation properties that can be used
for MIMO radar has been developed. We have employed ISL
minimization of the waveforms as the designing criterion, and
have formulated the ISL minimization based design as a quartic
optimization problem. This quartic optimization problem has
been converted into a quadratic form and then solved by
means of MaMi technique. We have properly selected the
majorized function for the objective function of the quadratic
optimization problem, which is used by MaMi in order to
find the corresponding solution. The proposed algorithms have
shown good correlations of the designed waveforms and faster
convergence as compared to its counterparts.
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