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Abstract—This paper focuses on algorithmic approaches to
solve the robust face recognition problem where the test face
image can be corrupted. The standard approach is to formulate
the problem as a sparse recovery problem and solve it using ¢;-
minimization. As an alternative, the approximate message passing
(AMP) algorithm had been tested but resulted in pessimistic
results. Our contribution is to successfully solve this problem
using the AMP framework. Recently developed adaptive damping
technique has been adopted to address the issue that AMP
normally only works well with Gaussian matrices. Statistical
models are designed to capture the nature of the signal more
authentically. Expectation maximization (EM) method has been
used to learn the unknown hyper-parameters of the statistical
model in an online fashion. Simulations demonstrate that our
method achieves better recognition performance than the impres-
sive benchmark /; -minimization, is robust to the initial values of
hyper-parameters, and exhibits low computational cost.

Index Terms—Approximate message passing (AMP); com-
pressed sensing; robust face recognition; sparse signal processing

I. INTRODUCTION

Robust face recognition problem is to recognize a test face
image that may be corrupted by arbitrary noise [1], [2]. It
has been demonstrated that sparse signal processing can solve
this problem with impressive performance. Mathematically, a
vector x is sparse if only a small fraction of components in x
are significant while the majority of the components are zero
or close to zero. Sparse recovery problem is to solve the linear
inverse problem

y=Azr+w, ey

where the observation y € R™ and the mixing matrix A €
R™>"™ are given, the unknown signal & € R" is assumed to
be sparse, and the noise w € R"™ is often white Gaussian. In
the robust face recognition setting [1], [2], the vector y is the
test face image, the matrix A is derived from training samples,
the sparse vector o contains both feature coefficients and the
arbitrary noise (assumed to be relatively sparse).

There are many algorithms to solve the sparse recovery
problem. They can be divided into two categories: greedy al-
gorithms and ¢;-minimization approaches. Greedy algorithms,
such as Orthogonal Matching Pursuit (OMP) [3], Subspace
Pursuit (SP) [4], are fast while may not work well in some
cases. {1-minimization is an efficient alternative approach to
the sparse recovery problem. It has been a hugely successful
approach in the past decade. Despite those existing methods, in
this paper, we are particularly interested AMP algorithms [5],
[6], [7], which are based on loopy belief propagation. Those
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alternative algorithms deliver both low computational cost and
performance guarantees while A has i.i.d. Gaussian entries of
zero mean. Unfortunately, the transform matrix A in the face
recognition problem cannot be modeled as a Gaussian matrix.
Experiments in [1] gave pessimistic results.

Recently, several variants of Generalized AMP (GAMP)
algorithm [7] have been proposed to handle non-Gaussian mix-
ing matrices. The ADMM-GAMP algorithm [8] has provable
convergence guarantees with arbitrary measurement matrix.
It requires to solve an additional least squares problem in
each iteration. That makes the ADMM-GAMP algorithm lacks
of computational efficiency. SWAMP [9] offers more robust
results as it requires a sequential updating procedure rather
in parallel. Also, it is not a fast approach compared with
other variant in the literature. Jeremy et. al. [10] proposed
an adaptive version of Damped-GAMP [11]. This so called
AD-GAMP method adaptively updates the damping coeffi-
cient, which is determined by the peak-to-average ratio of
the squared singular values in A. In AD-GAMP, it partially
updates the variables tuned by the damping coefficient. In this
paper, we study the AD-GAMP algorithm for the robust face
recognition problem.

Those GAMP based methods assume known prior infor-
mation about the signal. For example, the sparse signal is
Bernoulli-Gaussian (BG), the measurement noise is additive
Gaussian, etc. However, the hyper-parameters in those prob-
ability distributions are often not known a prior in practice.
Gaussian Mixture-GAMP (GM-GAMP) [12] use expectation
maximization (EM) method to estimate the hyper-parameters.
It assumes the sparse signal is Gaussian mixture distributed
and the noise is AWGN. BG-GAMP [13] assumes a BG
distributed sparse signal, which is an special case of GM in
GM-GAMP [12]. With EM learning, it has been shown that
the GAMP based algorithm normally has a better performance.

The main contribution of this paper is to successfully
solve the robust face recognition problem using the AMP
framework. AD-GAMP is adapted to address the issue that the
mixing matrix A in face recognition is far from the standard
Gaussian random matrix. Motivated by the nature of Wright
et al.’s framework [2], we model the unknown signal & using
a statistical model involving Bernoulli-Gaussian priors. The
major difference between our model and the benchmark [2]
is that in this work the sparse signal is divided into two
segments — one corresponds to the feature coefficients and
the other is linked to anomalies to achieve robustness —
and different segments have different hyper-parameters. Then
the EM method is employed to estimate the unknown hyper-
parameters associated with the two segments. With the EM
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and AD-GAMP coupled together, our method achieves better
recognition performance than the /;-minimization benchmarks
in the review paper [1], much better than the pessimistic results
of the original AMP [1]. Simulation results also demonstrate
that the algorithm is quite robust to the initial values of hyper-
parameters, and exhibits low computational cost thanks to the
efficiency of the AMP framework.

II. PRELIMINARY RESEARCH
A. Robust Face Recognition

Unlike traditional dictionary learning approaches, the au-
thors of [2] let the training samples be the dictionary in the
sparse representation based classification (SRC) framework.
Each testing image is assumed to be a sparse linear com-
bination of the training set. The mathematical model is as
follows, yo = [A1, Ag, ..., A [x] g, 23, .., 2] )]" = Az,
where y € R™ is the vectorized test image, the sub-matrix
A; € R™! and each block x; o € R! for i € [1,...,5].
Each column of A is an vectorized training image. Here, the
A; contains [ different images all for the ith identity. For
simplicity, let A € R™*" here. A overview of this framework
is shown in Fig. 1. In this case, the columns of transform
matrix A are correlated, hence the AMP algorithms do not
have convergence guarantees.

In [2], [14], the authors consider two fundamental issues in
face recognition problem. Firstly, the role of feature extraction.
In other words, one is aiming to project high dimensional
testing data into low dimensional feature spaces, which is still
informative for sparse representation. Secondly, the obstacle of
the occlusion. In practice, a fraction of test images are often
corrupted. In [2], [14], the robust SRC model is,

To )

y=1yo+e=I[A I eo

where y € R™ is a down sampled vectorized image with
sparse occlusion eg, and I € R™*™ is an identity matrix.
Eq. (2) can then be simplified as,

y=2® 0=z, 3)

where ® = [A, I] € R™*("+™) and the lower part of the
sparse coefficient ;1 = ey € R™. Then, it considers the
following ¢; problem,

& = argmin ||z||; s.t.y = Px.

After one get the estimated sparse coefficient & =
[#2, 2717, it is easy to assign the tested object to i* by
applying the Sparsity Concentration Index (SCI) in [2],

s - 10i(@o)lly / [[®oll, =1
s—1 ’
where J;(-) is a operator that keeps the i-th block of (-) .

1" = argmax =
K3

B. AMP/GAMP for SRC

The AMP is a powerful tool to solve the ¢; problem since
it exhibits both low reconstruction error and low computa-
tional complexity compared with benchmarks. However, this

mechanism only achieves the desired asymptotical optimal
performance when the linear transform is standard Gaussian.
The GAMP accommodates more general signal models. Here,
we consider GAMP for simplicity. GAMP is also flexible to
couple with the EM approach to learn the unknown hyper-
parameters such as sparsity values, which is more applicable
in real time applications.

In robust face recognition problem, the measurement matrix
® violates two assumptions which are critical for AMP
approaches. The first one is non-zero mean assumption of the
measurement matrix in practice. It has been shown in [15]
that even with a small positive mean of the i.i.d measurement
matrix, the algorithm may diverge. There are three ways of
solving this problem. First, remove the mean of the matrix in
pre-processing, which is common in image processing fields.
Second, modify the update procedure from parallel to sequen-
tial [9][15], since the parallel update is more problematic.
Third, modify the mathematical model/measurement matrix
to remove the mean, as in [10]. In our case, we remove all
the means of the training and testing images. The non-zero
mean value of the measurement matrix ® is dominated by
the identity matrix. In this case, the mean value is roughly
m(ﬁm) = nim If the number of training images is fixed
to n, a larger sampling size m leads smaller mean value.
If n or m is large enough, the non-zero mean issue will
not affect the convergence of the algorithm. The second
assumption of AMP is that the matrix ® is i.i.d, which is
impractical in this case, e.g., the columns are correlated. A
review of fast /1 —minimization algorithms has been studied
in [1]. The authors of [1] also added AMP in comparison.
In their i.i.d Gaussian experiments, AMP is shown to be the
fastest algorithm with near-machine precision. Not surpris-
ingly, AMP fails as it is not capable of handling the general
measurement matrix ®. We shall address the correlation issue
of the measurement matrix using the damping approach AD-
GAMP [10] and learn the unknown hyper-parameters using the
EM embedded BG-GAMP algorithm [13]. However, simply
combined algorithm can not achieve better recognition rate
than benchmark algorithms. Adapting to the structure of sparse
signal in SRC framework, we designed a new dual updating
approach based on the combination of those two algorithms.
More details of our method are presented in next Section.

III. AN AMP BASED METHOD FOR ROBUST FACE
RECOGNITION

A. Dual BG-GAMP

In this paper, we consider the two segments of the
sparse signal in robust SRC model (3) have different hyper-
parameters. Furthermore, we assume the two segments sparse
coefficients g and x; are both Bernoulli-Gaussian distributed.
Hence, terms dual BG-GAMP here. One can then apply
the EM embedded BG-GAMP algorithm [13] to learn the
unknown hyper-parameters that associated with the sparse
signal, e.g., the sparsities, mean values and the variances.

In our approach, we consider the upper part xy and the
lower part x; of the sparse coefficient x that are ideally not
identically distributed. In other words, we consider each of

1263



2016 24th European Signal Processing Conference (EUSIPCO)

Figure 1. Overview of the SRC framework. The test image (left), which is occluded by an sunglasses. It is equal to the sparse linear combinations of the
training images (middle) plus error image (right). The sparse coefficient (red) indicate the corresponding true identity, which is bounded in a red box in the
training images (middle). This graph is only for demonstration. There are hundreds or even thousands of training images in the test.

them has different hyper-parameters, i.e., sparsity levels es,
mean values s and variances ¢s. Then, for the signal x =
[zl 2T)T € R+ which is assumed to be drawn i.i.d
from the pdf

Px (15 €k, O, O1) = (1—€1)0(wj1) +exN (5 Ok, Px), (4)

where §(-) denotes the Dirac function, & = {0, 1}, j =
1, 2,..., (n+m), and N(-;0, ) is the Gaussian pdf. In this
paper, we introduce parameter k that it indicates which the
element x;;, belongs to, either g or x;. In particular, if & = 0,
then j = 1,...,n, otherwise j = (n + 1),...,(n + m). For
the AWGN noise w is assumed to be independent of = with
variance v, Py (w;1) = N (w;0,). In this case, we define
the seven unknown hyper-parameters of the prior distribution
as qi = [ex, O, ¢, . It is noteworthy to mention if we drop
the subscription k£ in Eq. (4), it becomes the standard BG in
[13].

B. Adaptive Damping

AMP/GAMP approach does not work well while the matrix
A is general, e.g., column correlated in robust SRC model.
Among the various ways of addressing this issue, we are
interested in the AD-GAMP [10] approach. In Damped-
GAMP, Rangoon et al. [11] introduced a damping param-
eter § to adjust the updates of adjacent iterations so that
the converges under general transform. It is shown that the
damping parameter is proportional to the peak-to-average ratio
of the squared singular value of the transform matrix. If this
ratio is sufficiently small, the GAMP converges. This scenario
explains why AMP performs well when the transaction is large
ii.d Gaussian. The damping approach guarantees the conver-
gence when the transaction is general, while it slows down
the progress of convergence. In [10], the authors proposed
an adaptive damping GAMP scheme to find a good damping
parameter to prevent slowing down the updates procedure too
much.

In this paper, we consider the combination of the Dual BG-
GAMP and the AD-GAMP approaches, which is shown in Al-
gorithm 1. Here we assume the dual hyper-parameters satisfies
the Eq. (4), where it is different from the original BG in [13].

In the GAMP, one is aiming to estimate the input & and the
noiseless output z = ®x of the transform. The probabilistic
relationships in the input and output models are defined in
[13]. The standard BG input scalar estimation function g;,
and the AWGN output scalar estimation function g,,; are
already given in [13] and [7], respectively. As one can find
in Eq. (6-7), (9-11), B(t) is the adaptive damping parameter.
At the very end of this algorithm, the damping parameter is
tuned according to current estimation &(¢+ 1) and the MMSE
cost J(t + 1), adaptively. Here, J(t + 1) = Jpewne(t + 1),
which is the Bethe Free Energy function. Due to the space
limit, we refer [8][10] for more details about AD-GAMP. It
is straightforward to obtain BG-GAMP algorithm by letting
B(t) =1 and ignore the adapting step in Algorithm 1.

C. Dual Expectation Maximization

We use EM algorithm to estimate the hyper-parameters in
Algorithm (1). The EM [16][17] is a well-established method
for maximum likelihood estimation with hidden variables. An
explicit EM algorithm has been given in [13] for BG-GAMP.
It updates hyper-parameters sequentially where updating one
parameter by fixing all the other parameters simultaneously.
The designed algorithm calls the algorithm 1 after each Dual
EM update step. In other words, we upgrade the parameters
in the outer algorithm (Dual EM) and perform the Dual BG-
AD-GMAP using the new parameters in the inner algorithm.
In our case, the EM update is,

Vk : qZ“ = argmng{lnP(:I:k,w;qk) | y;qZ},

where h denotes the iteration index. It it worth to note that one
has to calculate the corresponding hyper-parameters of each
x, separately. Following [13], it is easy to obtain the updates
for each hyper-parameters, which are shown in Algorithm 2.
Due to the page limit, we therefore only show the differences.

In the Dual EM step, one has to consider the values of
the hyper-parameters q; for different k. In this paper, we
proposed to update the g according to the structure of the
sparse signal, as one can see from the Eq. 2. In our approach,
@1 2 J[e1,01,61] is the hyper-parameters that associated
with the feature coefficiation xg, which is linear combination
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Algorithm 1 Inner
AWGN output.

algorithm (Dual BG-AD-GAMP) with

Initialization:
Vi (1) = /xjkPX(Ijk)
Ty
Vi) = [ e s Px )
T
Vi (0) = 0

/8(1) = 1’ ﬁmaz S (07 1}7 ﬂmzn S (07/BTTLCLZ‘]7 Gpass Z 11 Gfail < 1’

e>0
fort=1, 2, 3,...
(ntm)
Viiz(t) = Y ®id(t) ®)
Vit&i(t) = B)zw(t) + (1 —6(t)Tn(t—1) (6)
(ntm)
Viipi(t) = B D0 1@yl k() @)
+(1 = B)ui (t —1)
Viipi(t) = Zi(t) —pi®)ai(t—1) ®)
Vi : 4 (t) B(t) gout (yi, P (1), 15 () ®
+(1 = B(t))ai(t — 1)
Vi:pi(t) = BE)(—gour(yi,bi(t), 115 (1)) (10)
+(1 = B@)ui (t — 1)
(ntm)
Vipgk(t) = ( Z @] i (1)~ (11
+(1— B(t))u§k(t -1)
Vi) = Ek(t) + it Z%uz (12)
Vil (t+ 1) Mjk(t)gm(ﬁk(t% :ujk(t)) (13)
Vi@t +1) = gin(F(t), 1he(t) (14
Jt+1) JBethe(t + 1) (15)

if J(t+1) < max{J(At),...,J(t)} or
then if ||&(t) — &+ 1)|| /|2t +1)|| <e
then stop
else B(t+1) = GrassB(t)}
t=t+1

else A(t) = min {Bmin, Graa B(t)}
end
end

B(t) = ﬂmin

min {Bmaz,

coefficiation of the training images. For gy 2 [e2, 02, ¢o], it
is determined by the down sampling methods and the noise
of the test images x;. It is natural to guess that q; # go.
In order to compare the performances of the BG-AD-GMAP
based algorithms, we set the all the initial value of the sparse
vectors to be the same. We present the comparison in next
section.

IV. EXPERIMENTS

In this section, we present two experiments to compare the
performances of the method in this paper with the benchmark

Algorithm 2 The outer (Dual EM) Algorithm.

1 n
h+1 5 h
61Jr = EZW(levﬂgﬁfh)
Jj=1
1 n+m
h+1 ~
A= = > (e, mha6h)
j=n+1
1
h+1 ~
91+ = mng(m,uﬁ;q{b)
nep =1
1 n+m
h+1 ~ .
92+ = TRyt Z gm(Tﬁ,H}z;qg)
mey j=n+1
1
h+1
1+ = TTh¥1 Z T]lvujlvql)
ne;
) ’91 —7(7”]17!1]17'-11)’ 7‘]17%17‘11))
1 n+m
h+1 ~ .
ottt = g D w2 ab)
mey j=n-+1
) N r h 2 PN r h
'(‘92 _'Y(T'jQHLLjQ?(IQ)‘ + v(fj2, 1523 92))
1 m
212
Pt = EZH}L'—ZH +17)

¢y algorithms in the comprehensive review paper [1]!. The
first experiment is designed to compare the recognition rate
of all tested algorithms. The second experiment corresponds
to comparison of the computational costs in order to achieve
the best recognition rates in first experiment.

In the experiments, we explore the designed and benchmark
algorithms using the Extended Yale B Face Database [18]. We
choose 722 (19 images for each person) normal lighting con-
ditioned images as the training data and another 266 images
as the test data, which has more extreme lighting conditions.
The images are down-sampled from 192 x 168 to 32 x 28. A
percentage of randomly chosen pixels from each of the test
images are corrupted/replaced with i.i.d uniform distribution
(e.g., uniform over [0,255] for the 8-bit images). We vary the
percentages of corrupted pixels ¢ from 10 to 90 percent. In this
experiment, ® € R896x1618 "which has a high sampling rate
to keep the mean value as small as possible. We test all the
benchmark algorithms for all corruption cases within a fixed
time limit, which is 80 seconds in our experiment. We use the
SCI to calculate the recognition rate.

For the first experiment, we compared our approach with
the Dual Augmented Lagrangian Method (DALM) [1], Pri-
mal Augmented Lagrangian Method (PALM) [1], Primal-
dual Interior-point Algorithm (PDIPA) [19] and Truncated
Newton Interior-point Method (TNIPM, known as L1LS) [20]
in the review paper [1]. We also compared our Dual BG-AD-
GAMP (initialize ¢4 = €5 = 0.08 with Dual EM update)
approach with the BG-AD-GAMP (initialize ¢ = 0.08 with
EM update) algorithm. In other words, we update the hyper-
parameters of x; and x5 separately. In the experiments, we
set both algorithms have maximum 25 inner iterations and 200

'All the benchmark algorithms are available as Matlab toolbox:
http://www.eecs.berkely.edu/~yang/software/l I benchmark/.
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Figure 2. Recognition rates for different algorithms under different fractions
of noise corruptions.

outer iterations (EM step). In all the other algorithms, we let
number of iterations to 5000. The results of the recognition
rates of the benchmark algorithms are shown in fig. 2. As
one can see from the figure, our algorithm has the best
performance among all benchmarks in terms of recognition
rate. For the BG-AD-GAMP, it has similar recognition rate
DALM. Interestingly, Compared with our method, BG-AD-
GAMP has lower recognition rate since it does not update the
hyper-parameters separately.

In the second experiment, we test the computational cost
in in terms of recognition rate. For the lake of space, we
only show the comparison of our method and DALM (best
algorithm in the review paper [1]) under different fractions of
corruptions ¢ = 60%, 70%, 80% in Fig. 3. Our method achieves
the best recognition rate as shown in Fig. 2 in 50 iterations.
However, the DALM algorithm requires more iterations to
reach its best.
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