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ABSTRACT

Chroma features are a popular tool in musical signal process-
ing and information retrieval tasks, providing a compact rep-
resentation of the tonal content of a piece of music. A variety
of approaches to chroma estimation have been proposed, most
of which rely on the summation of related frequency partials.
However, frequency partials may be incorrectly assigned due
to the log/linear relationship of frequency and pitch. Vari-
ations of chroma employing overtone suppression strategies
are found in the literature. We propose a compositional model
of chroma, which considers a coarse modelling of the effects
of overtones in the expected chroma vectors of single notes.
Synthetic chord recognition experiments indicate the useful-
ness of the proposed approach.

Index Terms— Compositional model, chromagram,
powered Euclidean distances, non-negative

1. INTRODUCTION

Compositional models [1] are used in many audio signal pro-
cessing tasks, such as source separation [2] [3] and automatic
transcription [4] [5], and typically consider inverse problems
which can be solved through the approximation

y =~ Ax ey

where y € RM is a given signal or vector, A € RM*¥N
is a dictionary matrix, and x € RY is an unknown vector.
A matrix variant of (1), Y =~ AX, is often used for pro-
cessing audio spectrogram in a non-negative framework, with
Y,A,X > 0 in an entrywise sense, using methods based
upon those of Non-negative Matrix Factorisation (NMF) [6].
Many variants of NMF incorporate different priors in the de-
composition [2] [7] [4], while a variety of different objective
functions have been adapted to multiplicative update NMF al-
gorithms [6] [8] [3] [9].

Chroma, or pitch class profile [10], is a compact repre-
sentation of audio indicating the activity of semi-tone sepa-
rated pitch classes, without reference to the pitch height, or
octave, in which the class is active. Chroma-time represen-
tations, or chromagrams, are popular for music information
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retrieval tasks, such as chord recognition [11], key estimation
[12], and audio similarity search [13]. Typically the salience
of each chroma is defined by summation of windowed ele-
ments of a spectrum that are assigned to a given pitch class.
Fourier transforms may be used; however the pitch ambiguity
of low frequency elements led to the use of high-resolution
instantaneous frequency [14], or logarithmic frequency scale
filterbanks such as the Constant Q-Transform (CQT) [15] and
a filterbank with 88 bandpass filters centred on the fundamen-
tal frequencies of the keys of grand piano [16].

A problem when performing chroma estimation is that
overtones of a fundamental frequency may be assigned to
an incorrect chroma bin. For example, the second overtone
of a fundamental frequency is applied to the chroma bin of
the perfect fifth, as the first overtone of the perfect fifth and
the second overtone of the fundamental overlap. Different
approaches to countering this problem have been proposed
in the literature. A weighted spectrogram using a Gaussian
window centred on middle C is used to temper the effects
of overtones, assuming that most fundamental frequencies
are local to this selected centre [17]. The NNLS chroma of
Mauch and Dixon [15] performs an approximate transcription
of a CQT transform using a dictionary of harmonic templates,
then sums the pitch-time activations to estimate the chroma-
gram. More recently group sparsity has been used to assign
harmonic partials to pitch classes [18]. An alternative ap-
proach [19] builds chord chroma templates that include the
expected contributions of overtones with various distance
measures used to compare such templates with calculated
chroma vectors.

Perhaps surprisingly, given their popularity in audio pro-
cessing in general, a compositional approach to chroma has
not been previously proposed. In this paper, we propose such
an approach using a dictionary of single note chroma tem-
plates. We also propose using powered Euclidean distance
cost functions, that generalise the Hellinger distance, to per-
form the decompositions. These proposed approaches, and
some matching methods, are described in the next section.
Some previous chroma methods are then outlined, before they
are compared experimentally to the proposed approach. Re-
sults indicate the usefulness of the compositional method. Fi-
nally, we conclude with pointers to future work.
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Fig. 1. Chroma template for single note

2. PROPOSED APPROACH

The 88-pitched filterbank, proposed in [16] is used. A recent
result [3] states that additivity of audio spectra is better ap-
proximated in magnitude spectra than power spectra. Hence,
the /5 norm of the filterbank outputs over a time section is
employed as the pitch-time activation, rather than the /2 em-
ployed in [16]. From such a pitch vector, or matrix, P a
chroma feature can be calculated

Ym = Z Prn+12x0 2)

where o is the octave number, m € {1, .., 12} represent pitch
classes {4, ..., G}, and /i = m + 20 is the MIDI number of
a given note.

2.1. Compositional Chroma Model

In order to employ a compositional model for chroma a single
note chroma vector is simulated. This is performed by calcu-
lating a harmonic note template, with magnitudes assigned

my = 0.7 (3)

where my, is the magnitude of the kth harmonic partial of the
fundamental frequency fy. The magnitudes of the first ten
partials are assigned to the nearest chroma bin, with a floor
noise added. Fig. 1, shows such a single note chroma tem-
plate, which could be considered to represent a major chord.
A dictionary, A is formed using shifted versions of the single
note chroma template, as displayed in Fig. 2.

2.2. Powered Euclidean Distance

Different measures of fit may be employed to perform the ap-
proximation (1). In processing of audio spectrograms, the (-
divergence [20] is typically employed. However, we propose
to use Powered Euclidean Distance (PED) as an alternative to
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Fig. 2. Chroma dictionary for compositional approach

the B-divergence [20]. Both PED and the S-divergence are
special cases of the generalised o5 divergence [8], a recently
proposed flexible family of measures of fit:

(Otﬁ o atpB g a+B
P (ylz) = E Y, o gYm o
4

which also contains the a-divergence [21] as a special case.
The [-divergence is given by (4) with o = 1.
The powered Euclidean distances

=> (- 21)? (5)

m

CZE(y\z)

are af3-divergences with « = § = 1, including Euclidean
(n = 1) and Hellinger distances ( = 0.5), which we previ-
ously employed in the context of ¢, sparse NMF in [22]. We
note that a scaling parameter used in (4) is omitted from (5).

Empirical results given in [8], [23] indicate that a diagonal
structure underlies the o3 divergence, with some equivalence
between divergences of similar summed parameters o + [3,
parallel to the a-divergence. However, PED is the only fam-
ily of af-divergences that are symmetric, and indeed PEDs
are metrics [8]. Furthermore, unlike S-divergence, and af3-
divergence in general the PED does not consist of ratios of
y and z as can be seen by comparing (4) and (5). We be-
lieve that this makes the PED a more robust measure when
the model is less tuned to the data. As the chroma dictionary,
displayed in Fig. 2, is quite general, we consider that the PED
may be preferable as a measure-of-fit rather than the popular
[-divergence for chroma decompositions.

A multiplicative NMF update for the PE distance can be
simply derived from the o3 NMF updates, and is given by

AT [Y[n] ® z[nfl]]
AT[Z[Qn—l]]

X<+ X® (6)

where Z = AX and Y[ denotes elementwise exponentia-
tion of Y.
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Chord Active Chord Active
maj 1,5,8 min 1,4,8
aug 1,5,9 dim 1,47
sus 1,6,8 dom7 1,5,8,11

maj7 1,5,8,12 min7 1,4,8,11
minma;j7 1,4,8,12 min6 1,4,8,10
dim7 1,4,7,10 dim maj7 1,4,7,12
maj+7 1,5,9,12 +7 1,5,9,11

Table 1. List of chords and their active notes on a chromatic
scale. The root of the chord is denoted 1.

2.3. Matching methods

A popular approach to chord recognition is to match given
chroma vectors with either chord templates or other data-
points, and we propose different matching methods for these
two cases.

2.3.1. Template matching for mixed cardinality

Many previous template-based chord recognition implemen-
tations have focussed on classifying three note chords [17].
In this case, a binary template can be used for matching with
expected active chroma bins set to one and inactive bins to
zero, e.g. for a major chord

ty = [LOvaOa13();07170703070]' @)

This approach simply sums the activations in the expected
chroma bins through multiplication with the chroma vec-
tor, and the selected chord is that which displays the largest
sum. As we consider comparison of three-note and four-note
chords it is necessary to form a template model that affords
comparison of chords of these different cardinalities. To this
end, a binary vector such as above is centred simply through
subtraction of its mean, e.g. the vector in (7) transforms to
3 -1 -1-13-1-13 -1
4° 47 47 47447 474 4747 47 4
®)
leading to template vectors that are more discriminative be-
tween chords of different note cardinalities.

t =

2.3.2. Minimum Hellinger Distance

For nearest neighbour experiments we propose to use the min-
imum Hellinger distance (MHD), which we previously pro-
posed in [22], in a matching pursuit type algorithm:

qlo-slT, [0.5]

yl

e A ©)
a1

k= arg max
where d, is the kth column of a dictionary of chord-labelled
chroma vectors of unit sum and k& denotes the selected chroma
vector. The MHD can be derived from the cosine distance,

0.5] or

%, between the square root vectors, d£$,0'5] Lyl
from considering the value of the Hellinger distance at the
point where the gradient of the Hellinger distance between
two vectors is zero, similar to the scaling approach used for
B-divergences in [19]. Again the symmetry of the Hellinger /

PED is noted.

3. BASELINE CHROMA METHODS

It has previously been stated that most chroma methods can
be classed as either overtone suppressing or timbre-invariant
[17]. We consider some well-known methods of each of these
classes for comparison with the proposed approach. All meth-
ods use the 88 pitch filterbank [16], to allow fair comparison
with the compositional approach.

For timbre invariance we compare a chromagram derived
by summing from a log compressed spectrum where

[Pliog = logio(1 + 100 * [P]). (10)

This approach is referred to as LogC in this paper. Another
timbre invariant approach, the CRP feature proposed in [16]
is compared. The CRP feature is derived by forming the log
pitch spectrum (10), to which a DCT is applied. Only the
higher frequency elements of the DCT are kept in the re-
composition of the log spectrum, which is then summed, in
typical fashion, to form the chroma vector.

For overtone suppression, Gaussian filtering, seen to be
effective in [17], is used. In this case the pitch vector is fil-
tered by a Gaussian window centred on C4, described by

(60—q)?

[GW], =e %0 (11)
where ¢ is the MIDI note number, with ¢ = 60 referring to
C4. After filtering, the chroma vector is formed using typical
pitch class addition. This approach is referred to as GW in the
rest of this paper.

A variant of the Chord Template (CT) matching approach
of [19] is also compared. In order to have the closest compar-
ison to the proposed approach, the dictionary of chord tem-
plates is formed by multiplying the dictionary of single note
chroma vectors, displayed in Fig. 2 by a dictionary of binary
chord vectors such as in (7).

4. EXPERIMENTS

A synthetic dataset was formed using chords played on sev-
eral MIDI instruments, including an electric piano, a grand
organ, a harp and a string ensemble. A list of the fourteen dif-
ferent chord types used, and their active notes is outlined in
Table 1. Each of these chords was formed for all root notes,
leading to 151 different chord classes, as the aug and dim7
have redundant expressions in terms of chroma. Each chord
was reproduced with a range of root notes from MIDI 33 to
MIDI 92, i.e. 5 octaves.
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Fig. 3. Comparison of PED and S-divergence for chord
recognition, using both the best k-peaks and the template
matching approaches

4.1. Template matching

The proposed approach was compared to the other chroma
methods, CRP, LogC, WG, and CT, in experiments for chord
recognition using template-based matching. Several metrics
were compared for template based matching, the cosine dis-
tance, the cosine distance using centred templates, such as in
(8), and the Hellinger distance. An alternative best-k classifi-
cation was also compared, in which the largest k coefficients
in each chroma vector were taken, where k is the number of
notes in the known chord displayed by the vector. This can be
considered equivalent to template matching with known note
cardinality. For the proposed compositional approach, both
the PED and S-divergence were compared for a range of val-
ues in a + 8 = [0, ..., 2] in steps of 0.1. However, for PED,
when a + § = 0, the update (6) is not valid, and this value
was omitted.

In all cases the correct detections, ¢p, and incorrect detec-
tions, fp are labelled, from which the accuracy measure

Acc = x 100%

tp
tp+ fp

is derived. True positives were noted only when both the
chord type and the root were correctly identified.

The results for the comparison of the two generalised di-
vergences is shown in Fig. 3. In both cases, the performance
increases monotonically as o« + § — 0, while the PED is
seen to improve upon the S-divergence by around 3% for the
optimal values. A comparison of the optimal PED composi-
tional approach with the other approaches is given in Table 2,
where a large improvement is seen for the proposed method,
both for the best-k and template matching approaches. For all
methods using binary templates, the centred cosine distance is
seen to improve upon other measures, while a significant im-
provement is seen when Hellinger distance is employed with
the chord templates (CT) [19].

| Alg. [ Best-K [| Cosine | Centred | Hellinger

PED(0.05) 93.6 79.3 85.5 85.0
LogC 84.6 71.8 71.7 69.2
CRP 75.3 52.5 58.5 -
GW 83.4 69.0 73.0 69.7
CT - 70.8 71.7 76.8

Table 2. Comparison of compositional approach with PED to
other approaches for best-k, and template matching with co-
sine distance for binary templates (6), and centred templates,
and Hellinger distance for binary templates.

4.2. Nearest Neighbour labelling

For this set of experiments, classification was performed on
a nearest neighbour basis, comparing chords of a given in-
strument with those of other individual instruments. Two al-
ternative approaches are used for the datasets, from which to
find a neighbour. In the first approach, for each individual in-
strument a dataset is formed from the union of all datapoints
for all other instruments. In the second case, a mean vector
for each root-transposed chord is calculated and shifted, as in
Fig. 2. A dictionary is then formed by concatenation of the
chord-specific subdictionaries.

All datapoints from the original signals are then compared
to the dictionary and classified according to the labelling of
the nearest dictionary element. Both the cosine and mini-
mum Hellinger distances were used as measures of similar-
ity. Again, accuracy was defined relative to the numbers of
correct and incorrect detections.

The results are given in Table 3, where it is seen that
the proposed PED based compositional method performs best
overall. For the datapoint search, the performance for CRP is
similar to that of the PED, although this method does not per-
form so well when matching is performed with the mean vec-
tors. Again the Hellinger distance improves over the cosine
distance, while it was found that centring did not improve per-
formance relative to the cosine distance. When the datapoint
dictionaries were used the difference between all algorithms
was less than 3%; however when the dictionary of mean vec-
tors was employed, the relative performance was more vari-
able.

[ Alg. [ NN(©) [ NNH) [ M(C) | M(H) |

PED(0.05) | 82.0 855 [ 77.1 | 84.7
LogC 80.8 84.1 77.8 | 79.6
CRP 85.4 - 52.8 -
GW 79.4 82.6 70.5 | 76.7

Table 3. Results for the nearest neighbour experiments. NN
denotes datapoint search, M denotes search over the dictio-
nary of mean vectors. Bracketed letters denote cosine (C) and
minimum Hellinger (H) distances.
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5. CONCLUSIONS

We have described a compositional model of chroma, em-
ploying a dictionary of a shifted synthetic single note chroma
vector. The use of the powered Euclidean distance was con-
sidered for these decompositions and was seen to improve on
the well known [-divergence. While the initial results are
promising, further work will seek to employ the proposed
method in more realistic scenarios, while the incorporation
of prior information, such as temporal continuity will be in-
troduced.
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