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Abstract—In this work, the importance of the channel mis-
match effect in degrading the performance of deployed quantum
LDPC codes has been pointed out. We help remedy this situation
by proposing new quantum LDPC decoding strategies that can
significantly reduce performance degradation by as much as
50%. Our new strategies for the quantum LDPC decoder are
based on previous insights from classical LDPC decoders in
mismatched channels, where an asymmetry in performance is
known as a function of the estimated channel noise. We show
how similar asymmetries carry over to the quantum depolarizing
channel, and how an estimate of the depolarization flip param-
eter weighted to larger values leads to significant performance
improvement.

I. INTRODUCTION

The existence of quantum error correction codes (QECC)
was initially shown by Shor [1], Calderbank [2] and Steane [3],
with generalization to stabilizer codes shown by Gottesman
[4]. These works, amongst others, outlined the relationships
quantum error-correction codes have to classical codes, leading
to a pathway for the most successful classical codes, e.g.
classical LDPC codes, to be readily converted to quantum
codes. A more detailed history on the development of QECC
can be found elsewhere e.g. [5]. Quantum LDPC codes were
first proposed in [6], followed by the bicycle codes proposed
in [7]. More recently, many works attempting to improve
quantum LDPC code performance have been published, e.g.
[8] [9], and [10] based on quasi-cyclic structures.

Low-density parity-check (LDPC) codes were originally
proposed by Gallager in early ’60s [11], however, LDPC codes
remained largely unnoticed until their re-discovery in the mid
’90s [12] [13]. Since then many hundreds of papers have been
published outlining the near optimal performance of LDPC
codes over a wide range of noisy wireless communication
channels. In almost all of such previous works it was assumed
that the characteristics of the noisy wireless channel was
known. However, the reality is that in many cases an exact
determination of the wireless channel is unavailable. Indeed,
several works have in fact investigated the case where a
channel mismatch (or channel misidentification) occurs, which
in turn impacts on the performance of the decoder (e.g. [14]
[15]).

From the perspective of the work reported on here, the most
interesting aspect of such channel mismatch studies is the
asymmetry in the LDPC code performance as a function the

channel crossover probability for the binary symmetric channel
(BSC). In fact, the main focus of the work described here
is an investigation of whether such asymmetric LDPC code
performance carries over from the classical BSC to quantum
LDPC codes operating over the quantum depolarizing channel.

In [16], the impact of channel mismatch effects on the
performance of quantum LDPC codes over the quantum depo-
larizing channel was highlighted, where in practical settings
the error performance degrades if no or partial channel in-
formation is provided at the decoder side. In this paper, we
further investigate the behavior and the robustness of the sum-
product (SP) decoder over the quantum depolarizing channel.
Interestingly, an asymmetry behavior in performance is ob-
served as a function of the estimated channel flip probability,
showing that the performance of a quantum LDPC code would
experience a reduced degradation when the channel is overes-
timated instead of underestimated, provided the overestimated
channel knowledge is still within the threshold limit of the
code. Based on these observations, a new decoding strategy is
proposed that can improve quantum LDPC codes performance
by approximately 50%.

In Section II we discuss the behavior of the classical
SP decoder under channel mismatch conditions. In Section
III we briefly review quantum communications and the sta-
bilizer formalism for describing QECCs, and discuss their
relationship to classical codes. In Section III we also explore
the behavior of a quantum decoder when simulating over a
quantum depolarizing channel and show how the decoding
strategy we outline here leads to a significant improvement
in performance relative to decoders that simply utilize the
estimated channel parameter. Lastly, in section IV we draw
some conclusions and discuss future works.

II. BEHAVIOR OF CLASSICAL SUM-PRODUCT DECODER

It is well known in classical coding that LDPC codes are
capacity achievable codes [11] [13], given an optimal decoder.
The best algorithm known to decode them is the sum-product
algorithm, also known as iterative probabilistic decoding or
belief propagation (BP). The performance of sparse-graph
codes can be improved if knowledge about the channel is
known at the decoder side.

In [14], MacKay et. al investigated the sensitivity of Gal-
lager’s codes [11] to the assumed noise level when decoded
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by belief propagation. A useful result therein is that the belief
propagation decoder for LDPC codes appears to be robust
to channel mismatches because the block error probability is
not a very sensitive function of the assumed noise level. In
addition, an underestimation of channel characteristics deteri-
orates the performance more compared to an overestimation
of channel characteristics. This behavior is shown in Fig. 1.
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Fig. 1. Probability of block error as a function of estimated flip probability
when the true flip probability is fixed.

Our results shown in Fig. 1 are for a rate half code of block
length N = 2040 over a binary symmetric channel (BSC).
The code is a (3, 6) regular LDPC codes which is constructed
with the length of the cycle maximized. The plot shows the
probability of block and bit error (PBLER/PBER) as a function
of assumed flip probability f̂ when the true flip probability f
is fixed throughout the simulation.

The vertical straight line indicates the true value of the noise
level, and the minimum point of the plot is approximately
at the intersection between the lines. This infers that an
optimal performance of a practical SP decoder can be achieved
when the input of decoder is the true noise level. The slope
towards the left of the graph is steeper than the slope towards
the right, indicating that underestimation of the noise level
degrades the performance more so than overestimation does.
However, when the estimated noise level is far too large,
there is a significant increase in the error probability. Such
higher flip probabilities can be thought of as the classical
Shannon’s limit (in this case, the Shannon’s limit for rate 1/2
code is 0.11 computed from CBSC ( f ) = 1 − H2( f ), where
H2(x) = −x log2(x) − (1− x) log2(1− x) is the binary entropy
function), which theoretically represents the threshold ( f thr )
for the noise level that guarantees reliable transmission at a
certain rate.

III. DECODING OF QUANTUM LDPC CODES

Motivated by the decoding asymmetry discussed above
for classical LDPC codes, we now wish to explore whether

a similar asymmetry in decoding performance is achieved
for quantum LDPC codes. As stated below the well-known
quantum stabilizer codes can be designed from classical codes.
Upon construction of such codes we will then investigate
the decoding performance under asymmetrical estimates of
the quantum channel parameters. The quantum channel we
investigate is the widely adopted depolarization channel, and
the BP decoding performed over GF (4).

A. Quantum LDPC Codes

A stabilizer generator S that encodes K qubits in N qubits
consists of a set of Pauli operators closed under multiplication,
with the property that any two operators in the set commute,
so that every element of S can be measured simultaneously.
Define

E ◦ F :=
∏N

j=1
Ej ◦ Fj (1)

as the commutativity between two Pauli operators E, F. Then
Ej ◦ Fj = +1 if EjFj = FjEj and Ej ◦ Fj = −1 if EjFj =

−EjFj . This implies that two Pauli operators either commute
(E ◦ F = +1) or anti-commute (E ◦ F = −1).

Consider now a set of error operators {Eα} taking a state
|ψ〉 to the corrupted state Eα |ψ〉. A given error operator either
commutes or anti-commutes with each stabilizer Si (row of
the generator S) where i = 1 . . . N − K . If the error operator
commutes with Si then

SiEα |ψ〉 = EαSi |ψ〉 = Eα |ψ〉 (2)

and therefore Eα |ψ〉 is a +1 eigenstate of Si . Similarly, if it
anti-commutes with Si , the eigenstate is −1. The measurement
outcome of Eα |ψ〉 is known as the syndrome.

To connect quantum stabilizer codes with classical LDPC
codes, a convenient isomorphism between the single qubit
Pauli group P1 generated by Pauli operators {I, X, Z,Y = X Z }
(the phase factor is ignored under the isomorphism) and
the Galois field GF (4) generated by {0, 1, ω, ω̄ = ω2} is
used. The isomorphism is given by the element identification
I ↔ 0, X ↔ 1, Z ↔ ω and Y ↔ ω̄, and the operation
identification multiplication↔ addition, commutativity↔ trace
inner product. Under this isomorphism, the commutativity
between two Pauli operators shown in (1) is equivalent to

E ◦ F ≡ tr(σEσ̄F) for E, F ∈ P1 ↔ σE, σF ∈ GF(4), (3)

where the trace function tr(x) = x + x2 performs over
GF (2). For two vectors σE = (σE1, σE2, . . . σEN ) and σF =

(σF1, σF2, . . . σFN ), we have σEσ̄F =
∑

i σEi × σ̄Fi as the
inner product. Hence, E ◦ F = +1 if tr(σEσ̄F) = 0 and
E ◦ F = −1 if tr(σEσ̄F) = 1.

B. SP Decoding for Quantum LDPC Codes

To decode a quantum LDPC code over the most common
quantum channel model, namely the quantum depolarizing
channel, it is analogous to decode a classical code over 4-ary
symmetric channel [17]. The channel output are diagnosed by
the set of M = N − K stabilizer generators and the outcomes
s ∈ {+1,−1}M (syndrome) is then used as decoder input to
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estimate possible error occurred. Assuming an initial quantum
state representing a codeword, the initial probabilities pi for
the ith qubit of the state undergoing an X , Y or Z error are

pi =
{

f /3 f or X, Y, and Z
1 − f f or I , (4)

where f is the flip probability known at the decoder.
The standard BP algorithm operates by sending messages

along the edges of the Tanner graph. Let uqi→c j and uc j→qi

denote the messages sent from qubit node i to check node j and
messages sent from check node j to qubit node i, respectively.
Also denote N(qi) as the neighbors of qubit node i, and N(cj )
as the neighbors of check node j.

To initialize the decoding algorithm, each qubit node sends
out a message vector to all its neighbors equal to its initial
probability values [1− f , f /3, f /3, f /3] obtained according to
equation (4). Upon reception of these messages, each check
node sends out a message to its neighboring qubit node given
by

uc j→qi =
∑

{Eqi′
|Eqi′

◦c j=sj ) }

∏
qi′ ∈N (c j )\qi

uqi′→c j (5)

where N
(
cj

)
\qi denotes all neighbors of check node j except

qubit node i, and the summation is over all possible error
sequences Eqi′ . Each qubit node then sends out a message to
its neighboring checks given by

uqi→c j = pi
∏

c j′ ∈N (qi )\c j

uc j′→qi (6)

where N
(
qi

)
\cj denotes all neighbors of qubit node i ex-

cept check node j. Equations (5) and (6) operate iteratively
until the error operator is correctly decoded or the maxi-
mum pre-determined iteration number is reached. The decoder
outputs an tentative decision when an error operator Ê =
(Êq1 Êq2 . . . ÊqN ) has the same syndrome as s = (s1, . . . sM ),
where

Êqi = arg max
Eqi
∈P1

{
pi (Eqi | s)

}
. (7)

Note that to effectively compute the check node operation
described in (5), FFT-based SPA is used.

C. Behavior of SP Decoder over Depolarizing Channel

We now investigate the dependence of the performance of
a quantum LDPC code on the estimated flip probability f̂
of a depolarizing channel using the same quantum LDPC
code simulated in [16], which is Code A of [8]. In each
decoding process, the decoder performed iterative sum-product
algorithm until it either found an error operator or reached
a maximum number of 200 iterations. The simulation plots
herein is the probability of block error (PBLER) as a function
of the estimated flip probability f̂ .

In the simulation, the noise vectors were randomly gener-
ated to have weight exactly f N , where N is the block length
of the code (N = 1034) and f is the true flip probability for
the depolarizing channel. The decoder assumed an estimated

flip probability f̂ . We varied the value of f̂ while the the true
flip probability f is fixed. The results of our simulations are
shown in Fig. 2.
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Fig. 2. Probability of block error as a function of estimated flip probability
when the true flip probability is fixed.

Similar to the case of classical LDPC codes discussed
earlier, we can see from Fig. 2 that optimal performance in
the quantum LDPC code can be obtained when the input at
the decoder is close to the true flip probability. The trend of
the curve in Fig. 2 also shows an overestimate of f is less
costly than an underestimate of f , provided that the estimation
of channel flip probability, f̂ , is less than some threshold
f Q
thr

. For the code shown in Fig. 2, the theoretical threshold
is f Q

thr
= 0.1893 (the capacity of classical 4-ary symmetric

channel computed from C4−ary = 2 − H2( f ) − f log2(3)).
In the following section, we show that an improvement in
performance of the SP decoder can be achieved if f̂ < f Q

thr
.

Note that the PBLER as a function of f̂ shown in Fig. 2 is
code dependent, which only a small range of PBLER can be
shown due to the error correction capability of Code A.

D. Quantum Channel Estimation

The issue of quantum channel identification is of funda-
mental importance for a range of practical quantum informa-
tion processing problems (e.g. [5]). In the context of LDPC
quantum error correction codes, it is normally assumed that
the quantum channel is known perfectly in order for the code
design to proceed. In reality of course, perfect knowledge of
the quantum channel is not available - only some estimate of
the channel is available. The quantum depolarization channel
of some states can be defined as ε(ρs) = (1 − f )ρs +
f /3

∑3
j=1 σ j ρsσ j , where f is the true flip probability.

In what follows we will assume the true value of f is
unknown a priori, and must first be measured via some
channel identification procedure. This estimate of f , which
we will refer to as f̂ , will be used in a decoder in order to
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measure its performance relative to a decoder in which the
true f is utilized.

In general, quantum channel identification proceeds by
inputting a known quantum state σ (the probe) into a quantum
channel Γp that is dependent on some parameter p (in our
case p = f ). By taking some quantum measurements on the
output quantum state Γp (σ) which leads to some result R,
we then hope to estimate p. The input quantum state may
be unentangled, entangled with an ancilla qubit (or qudit),
or entangled with another probe. Multiple probes could be
used, or the same probe can be recycled (i.e. sent through the
channel again).

Optimal channel estimation via the use of the quantum
Fisher information has been well studied in recent years,
particularly in regard to the determination of the parameter
f of the depolarizing channel (e.g. [18] - [22]). Defining
ρ f = Γf (σ), the quantum Fisher information about f can
be written as

J ( f ) = J
(
ρ f

)
= tr

[
ρ f

]
L2
f ,

where L f is the symmetric logarithmic derivative defined
implicitly by

2∂f ρ f = L f ρ f + ρ f L f ,

and where ∂f signifies partial differential w. r. t. f . With the
quantum Fisher information in hand, the quantum Cramer-Rao
bound can then be written as

mse
[

f̂
]
≥ (NmJ ( f ))−1

where mse
[

f̂
]

is the mean square error of the unbiased
estimator f̂ , and Nm is the number of independent quantum
measurements.

The performance results in [16] are obtained by randomly
estimating a flip probability from a truncated normal distribu-
tion at the decoder side, given the mean square error of the
unbiased estimation f̂ .

E. Improved Decoding Strategy

In this section, a numerical approach to improving the
performance of the SP decoder is described. The asymmetric
behavior of the SP decoder shown in Fig. 2 implies that in the
case of channel mismatch, an overestimation of the channel
flip probability is more desirable than underestimation.

Consider the case where a decoder can only attain partial
channel information by probing the quantum channel using
un-entangled or entangled quantum states. Given such partial
information we will then weight our estimate of the channel
parameter (at the decoder side) to larger values (rather than
smaller values) of the estimated flip probability.

For a given true flip probability f , the probability of block
error shown in Fig. 2 can be fit approximately by:

P( f )
BLER ( f̂ ) ≈ a + b f̂ 3 + c f̂ 5 + d f̂ 7 + e

√
f̂ ln( f̂ ), (8)

where a, b, c, d, e are constants. Assuming our estimator of
f̂ is centered on the true flip probability (i.e. an unbiased

estimator), has a variance derived from its quantum Fisher
information (i.e. an optimal estimator), and has a known
probability density function P( f̂ ), we can then make an
estimate of what constant should be added to any estimated f̂
in order to maximally improve the decoder performance.

Note that, for the case where the qubit probe is in an
unentangled state, the quantum Fisher information about f
can be shown to be (NmJ ( f ))−1 = [ f (2 − f )]. The average
probability of block error for a given f can then be estimated
using the equation

P̃BLER =

∫ f
Q
thr

0
P( f̂ )PBLER ( f̂ )d f̂ . (9)

The performance of the SP decoder can be improved if a factor
∆ f̂ is added to the estimated value of f̂ . That is, f̂→ f̂ + ∆ f̂ .
The question then becomes, given some channel what is the
optimal ∆ f̂ that minimizes the expected probability of error?
To answer this, equation (9) is modified to

P̃BLER (∆ f̂ ) =
∫ f

Q
thr

0
P( f̂ )PBLER ( f̂ + ∆ f̂ )d f̂ , (10)

The optimal ∆ f̂ is then the solution to

∂

∂∆ f̂
P̃BLER (∆ f̂ ) = 0. (11)

One could repeat this process for a range of true channel
flip probabilities, and derive an estimate of the ∆ f̂ averaged
over the range of true flip probabilities where QECC can be
expected to be of relevance, that is

∆ f̂avg =
∫ f

Q
thr

0
P( f | f̂ )∆ f̂ d f . (12)

For the same code (Code A) as that used in Fig. 2, assume
a uniform distribution for P( f | f̂ ), and taking Nm = 1 in
the Fisher information, we found that value of ∆ f̂avg to be
very weakly dependent on f (see Table I ). This means that
simply adding to each estimated f̂ the additional factor ∆ f̂avg
led to substantial performance improvement. The magnitude
of this improvement can be seen in Fig. 3. In this figure
∆ f̂avg ≈ 0.01422 is applied at the the decoder to provide the
improved error correction (shown are the fraction of blocks in
error PBLER), denoted as ‘CodeA − f̂ +∆ f̂avg’. The notation
‘CodeA − f̂ ’ in this figure is for the case where the input to
the SP decoder is f̂ only, whereas the notation ‘CodeA − f ’
is for the case where the input to the decoder is the true flip
probability f . As can be seen improvements of up to ∼ 50%
can found from the new strategy ( f̂ + ∆ f̂avg), relative to the
case of just utilizing the estimated f̂ . Similar results to those
shown were found for other codes investigated, although the
factor to be added was found to be a function of the code.
For example, in another code investigated (Code B using
Construction method III of [8] code length N = 2068) a
∆ f̂avg ≈ 0.00365 was found to be better and the performance
improvement is up to ∼ 30% relative to the case of utilizing the
estimate f̂ (the corresponding optimal ∆ f̂ for each different
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true flip probability f for Code B is also listed in TABLE I
and see also Fig. 3 for simulation improvement). Of course,
improved channel estimation also alters the details of our anal-
ysis, with more accurate measurements (e.g. a higher number
of measurements Nm of the channel) leading to smaller ∆ f̂avg,
and smaller improvements in performance.

TABLE I
OPTIMAL ∆ f̂ FOR DIFFERENT f .

Code A Code B
f ∆ f̂ f ∆ f̂

0.04 0.02638 0.05 0.00554
0.03 0.01659 0.04 0.00471
0.02 0.01292 0.03 0.00397
0.01 0.00097 0.02 0.00268

0.01 0.00134

Finally, it is perhaps worth illustrating how the use of
optimal ∆ f̂ for each f (denoted as ‘CodeA− f̂ +∆ f̂ ’ in Fig. 3),
rather than ∆ f̂avg for every f , impact the results. From Fig.
3 we can see that if the optimal ∆ f̂ for each true f is applied
for f > 0.025, the error performance is better compared to the
case of using ∆ f̂avg for every f (see the magnified portion in
Fig 3). This is true since ∆ f̂avg provides excess weight for
small f and less weight for large f .
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Fig. 3. Comparison of block error rate of Codes A and B.

IV. CONCLUSION

In this work we have investigated possible improvements
in the decoding strategies of quantum LDPC decoders in
the quantum depolarization channel. The importance of the
channel mismatch effect in determining the performance of
quantum LDPC codes has very recently been shown to lead
to a degradation in the qubit error performance. In this work
we have illustrated how such a performance gap in the qubit
error performance can be substantially reduced. The new
strategies for quantum LDPC decoding we provided here are
based on previous insights from classical LDPC decoders in
mismatched channels, where an asymmetry in performance
is known as a function of the estimated bit-flip probability.
We first showed how similar asymmetries carry over to the

quantum depolarizing channel. We then showed that when a
weighted estimate of the depolarization flip parameter to larger
values is assumed, performance improvement by as much as
50% was found.

The work outlined here will be of practical importance
when large-scale quantum networks are built, and sophisticated
quantum error correction codes are deployed in order to
maintain the entanglement between the distributed entangled
qubit pairs that underpins these emerging networks. The
strategies described here will ultimately manifest themselves in
an improved performance of entanglement-based quantum key
distribution, or any other entanglement-based quantum com-
munication application, deployed over such future networks.
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