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Abstract—In wide-bandwidth high-resolution synthetic aper-
ture radar (SAR), high sampling rates generate big demands
for computations and storage. This paper exploits the sparsity
of the electromagnetic reflectivity of far-field targets in the
range-azimuth domain to propose a sparse Fourier transform
(SFT) based ranged doppler (RD) algorithm for SAR imaging.
The proposed algorithm ensures the same resolution as the RD
algorithm with computational complexity O(K log2 K), where K
is of the order of the target scene sparsity, while employing only
O(K log2 N) samples in azimuth direction and O(K log2 Nt) in
range direction, where N and Nt denote the number of Nyquist
sampling points in azimuth and range direction, respectively.

I. INTRODUCTION

Synthetic aperture radar (SAR) imaging is attracting interest
due to superior resolution performance, all-weather condition
operation, and good interference suppression performance [1],
[2], [4], [5]. In SAR, high resolution in both the azimuth and
range direction can be obtained by employing the spotlight
mode with wideband signals. For example, a 3GHz band-
width signal can achieve a resolution of 0.05 meters. When
Nyquist rate sampling is performed in the spotlight mode with
wideband signals, the large amount of sampled data create big
storage and computational complexity issues [1], [2].

SAR imaging algorithms can be divided into time-domain
and frequency-domain. Time-domain imaging algorithms in-
clude the back propagation (BP) algorithm [1], which provides
high resolution and wide applicability but with the price of
large computational complexity, long imaging time, and poor
real-time performance. Frequency-domain imaging algorithms
include the range Doppler (RD) algorithm, the chirp scaling
algorithm, the polar format algorithm, and the Omega-k algo-
rithm [1], [2]. One advantage of the frequency-domain imag-
ing algorithms is the reduction of computational complexity
achieved by replacing two-dimensional manipulation in the
time-domain with two one-dimensional manipulations in the
frequency domain.

In this paper we consider a SAR system operating is
spotlight mode with wideband waveforms. We focus on fre-
quency domain approaches and consider way to further reduce
complexity by exploiting the sparsity of targets. In scenarios
in which the targets are sparse, compressed sensing (CS) has
been proposed for reducing the amount of data that need to
be collected, thus reducing the radar operational cost [4], [5],
[11]. However, CS based methods for recovery of the target
scene involve high computational complexity and are also
sensitive to noise [3].
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Fig. 1: A brief model of ground-plane geometry for a spotlight
mode SAR.

This paper exploits sparsity of targets in the range-azimuth
domain in order to reduce the amount of sampling needed.
In particular, we follow the RD approach, but forward to
the image formation processor (IFP) fewer range and azimuth
samples, obtained in a pseudo random fashion. The IFP applies
Sparse Fourier Transform (SFT) [7]–[10] in order to perform
range and azimuth compression. The number of range samples
needed is O(K log2Nt) and the number of azimuth samples
needed is O(K log2N), where K is of the order of the
target scene sparsity and N , Nt denote the number of Nyquist
sampling points in azimuth and range direction, respectively.
Typically O(K log2Nt) and O(K log2N) are much smaller
than the number of range and azimuth samples Nt and N
needed for Nyquist rate sampling. The computational com-
plexity for this SFT based RD algorithm is O(K log2K),
which represents a substantial reduction as compared to typical
RD approaches, and also CS-based approaches.

The remainder of this paper is organized as follows. Section
II presents the general SAR signal model. In Section III, the
SAR imaging based on SFT is described in detail. Numerical
simulations are provided in Section IV. Finally, Section V
concludes this paper.

II. SIGNAL MODEL OF SPOTLIGHT MODE SAR

A brief model of ground-plane geometry for a spotlight
mode SAR is shown in Fig. 1, where a SAR generates and
transmits a sequence of wideband pulses at a constant time
interval. In the spotlight mode, the SAR always steers at a



fixed scene as the radar sensor traverses the straight path. The
transmitted pulse is of the form

f(t) = exp(j2πfct) exp(jπβt2)rect(t), (1)

where fc and β denote the pulse carrier frequency and chirp
rate, t is the fast-time variable in range direction and rect(t)
equals one in [−Tc/2, Tc/2] and zero elsewhere with Tc
denoting the pulse duration.

The demodulated echoes received at the radar sensor with
the point scatters located in the illuminated scene Ω can
therefore be expressed as

s(t, n) =
∑
p∈Ω

σ(p) exp

(
−j2πfc

2R(n,p)

c

)

· exp
(
jπβ(t− 2R(n,p)

c
)2
)

rect
(
t− 2R(n,p)

c

)
,

(2)

where p denotes the position of the scatter with corresponding
complex reflectivity σ(p), n denotes the pulse number and
also the slow-time variable in azimuth direction, R(n,p) is the
distance between the position of the sensor while transmitting
the nth pulse and the position of the scatter p.

III. SAR IMAGING USING THE SFT
A. Imaging Procedures

The classic RD imaging algorithm mainly consists of range
compression, range cell migration correction (RCMC) and
azimuth compression [1]. When the time delay of receiving
the transmitted pulses caused by the location difference of
any two scatter in the far-field scene is much smaller than the
pulse duration, the dechirp technique can be used for range
compression [2], [6].

The dechirp in range compression is achieved by multiply-
ing the demodulated received echo (2) with the conjugate of
the reference signal,

sRC(t, n) = s(t, n) · exp(−jπβt2)

=
∑
p∈Ω

σ(p)A(n,p) exp

(
−j2πfc

2R(n,p)

c

)
· exp

(
−j2πβt2R(n,p)

c

)
rect

(
t− 2R(n,p)

c

)
,

(3)

where A(n,p) = exp
(
jπβ(

2R(n,p)
c )2

)
is known as residual

video phase [4]. The term exp
(
−j2πfc 2R(n,p)

c

)
in (3) is

the azimuth signal which will be compensated in the azimuth
compression step, while the term exp

(
−j2πβt 2R(n,p)

c

)
in

(3) is the range-azimuth coupling term which includes the
range cell migration and target range position information.
It can be observed that, within the same pulse (the same
n), the term exp

(
−j2πβt2R(n,p)

c

)
is a complex sinusoid,

the frequency of which directly relates to the target position
R(n,p). As a consequence, by taking the Fourier transform
of (3) with respect to t, the contribution of the scatters in the
range direction can be narrowed to the peaks of the spectrum.

However, to eliminate the relevance of different scatters,
RCMC is needed before compression. Thus, imaging can
therefore be analyzed separately in the range and azimuth
direction [1]. Ignoring the spatial variation of the range cell
migration, RCMC is implemented by multiplying sRC(t, n)
with the reference range migration corrected signal sRCMC(t)

sRCMC(t) = exp

(
j2πβt

2R(n,pref )

c

)
, (4)

where pref denotes the reference target which is always
chosen as the center of the illuminated scene pref = 0. Range
compression with RCMC is therefore achieved by

sRCMC(ft, n) =Ft{sRC(t, n)sRCMC(t)}

=
∑
p∈Ω

σ(p)A(n,p) exp

(
−j2πfc

2R(n,p)

c

)

· sinc
(
2π(ft + β

2(R(0,p)−R(0,0))
c

)

)
,

(5)

where R(0,p) denotes the initial distance from the SAR
platform to the target located at p. When the term R(0,p)−
R(0,0) is equal to zero, it follows that the two scatters p and
pref = 0 are in the same range bin, while when it is nonzero,
the two scatters are not in the same range unit bin.

Next, azimuth compression is needed to focus the ex-
act location of the scatters. Let us assume that in the `th
(` = 1, 2, ..., Nt) range bin there are Ql targets. The received
azimuth signal can be expressed as

sAZI(n) =

Ql∑
m=1

σ(pm) exp

(
−j2πfc

2R(n,pm)

c

)
. (6)

Under the condition of ignoring the spatial variation of the
azimuth signal, the azimuth compression reference signal can
be defined as

sREF (n) = exp

(
j2πfc

2R(n,pref )

c

)
, (7)

where pref is always chosen as p0 = 0. Let us assume that the
radar sensor at the initial position pr(0) = [x0, 0, z0] moves
at the speed of v = [0, vy, 0] and the targets in the `th range
bin is located at pm = [xm, ym, zm],m = 1, 2, ..., Ql. The
received echo in the `th range bin after azimuth compression
can thus be derived

sAC(n) = sAZI(n)sREF (n) (8a)

=

Ql∑
m=1

σ(pm) exp

(
−j2πfc

2(R(n,pm)−R(n,p0))

c

)
(8b)

=

Ql∑
m=1

σ(pm) exp

(
−j2π 2fcvyym

cR · PRF
n

)
, n = 0, ..., N − 1

(8c)

where

R = R(n,pm) =

√
(x0 − xm)2 +

( vyn
PRF

− ym
)2

+ (z0 − zm)2,
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Fig. 2: A block diagram for the SFT based RD algorithm.

m = 1, 2, ..., Ql, since the scatters are assumed in the same
range bin and PRF denotes the pulse repetition frequency. (8c)
is the linear superposition of Ql complex sinusoids containing
Ql spatial frequencies, i.e., ωm =

2fcvyym
cR·PRF , in which the term

ym is directly related to the scatters locations.
As a consequence, by taking the Fourier transform of (8c)

with respect to slow-time n, the contribution of the scatters
in the azimuth direction can be narrowed to the peaks of the
Doppler spectrum, and this is the azimuth compression can be
completed. In the `th range bin, the azimuth compressed data
is given by

sAC(fn) = Fn{sAC(n)}

=

Ql∑
m=1

σ(pk)sinc
(

2π(fn +
2fcvyym
cR · PRF

)

)
,

(9)

where Fn denotes the Fourier transform in the azimuth direc-
tion.

Ultimately, after the procedures described above, the output
of the imaging result can be represented as

Simage(ft, fn) =
∑
p∈Ω

σ(p)A(n,p)sinc
(
2π(fn +

2fcvyyp

cR · PRF
)

)

· sinc
(
2π(ft + β

2(R(0,p)−R(0,0))
c

)

)
(10)

B. Proposed SFT-RD Imaging Algorithm

Based on the previous discussion, range and azimuth com-
pressions can be implemented using Fast Fourier Transforms.
The FT peaks after range compression occur at locations
directly related to spatial frequencies R(n,p), and the loca-
tions of the FT peaks after azimuth compression are directly
related to spatial frequencies ym. However, if the number of
scatters Q is much smaller than N and Nt, the image can
be sparsely populated in both azimuth and range direction. In
such cases, there will be fewer spatial frequencies in (3), (8c)
to be determined. The SFT is uniquely suited to identify those
frequencies using a small number of samples and involving
lower complexity than the FFT. The proposed SFT based RD
imaging algorithm is shown in the block diagram of Fig. 2.
The locations of the samples needed in range and azimuth
directions as included in the sets A and B can be calculated as
a priori and sent to the radar sensor. Thus, the undersampling
of the data can be achieved before the range dechirp procedure.

The SFT algorithm will be applied separately in range and
azimuth direction to replace the FFT in (5) and (9). The
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Fig. 3: A block diagram for Identification.

following discussion is to take the azimuth compression using
SFT for instance.

The SFT algorithm proceeds in an iterative fashion. First,
the spatial frequencies i.e., ωm =

2fcvyym
cR·PRF in (8c), are

identified and their coefficients are estimated. Then, an ap-
proximation of the signal is constructed, and is subsequently
subtracted from the observed processed signal. The same
process is repeated for the residual signal to improve the
estimation performance.

The SFT utilizes a set of pseudo-randomly selected
points. With knowledge of odd numbers σ̄, σ̂ chosen from
{1, 3, ..., N−1} and integers t̄, t̂ chosen from {0, 1, ..., N−1},
the locations of the azimuth undersampled data used in iden-
tification and estimation denoted as Ī and Î , respectively, are
given by

Ī = ∪K−1
k=0 (t̄+ σ̄(k − 1) + I0) mod N, (11)

Î = ∪K−1
k=0 (t̂+ σ̂(k − 1)) mod N, (12)

where I0 = {0, 2b}, b = 0, 1, ..., log2N/2 and B = Ī ∪ Î . The
need of I0 comes from the bit-testing procedure which will
be explained detailedly in the following.

Fig. 3 shows a block diagram for the identification pro-
cess [9]. To identify the spatial frequencies, the sampled
signal at the locations Ī , sĪAC(n), is filtered by a box-car
filter bank hk(n) = h(n)e−2πjnk/K , k = 0, 1, ...,K − 1 with
h(n) =

√
N/K,n = 0, 1, ...,K − 1 containing K = buQc

frequency bins, where u is a small positive number and u > 1.
The kth signal after the filter bank can then expressed as

s̄ĪACk
(n) =

√
N

K

K−1∑
i=0

h(i)sĪAC(n− t̄− σ̄i)e−2πjik/K (13)

At a fixed point n ∈ {0, 1, ..., log2N/2} the values of
s̄ĪAC0

(n),...,s̄ĪACK−1
(n) can be calculated by the K-point FFT

of the product of the sampled input signal with the filter. Since
the sampling scheme leads to permutation of the spectrum
of the azimuth signal, undo permutation as shown in Fig. 3
is applied to revert the locations of the spatial frequencies.
Because there are only a few spatial frequencies, and due to the
spectrum permutation, each bin {sĪACk

(n), k = 0, 1, ...,K−1}
will probably contain a single significant frequency {ω̄k, k =
0, 1, ...,K − 1}. The frequency in each filter output can then
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be identified via a process called bit-testing, as described in
[8].

The estimation step provides the approximation of target
coefficients corresponding to spatial frequencies identified in
the previous step. If we aim to estimate the coefficient of
a significant frequency ω, first, we demodulate the signal
sBAC(n) by ω. The corresponding coefficient becomes the
DC component of the demodulated signal. Then the sampled
demodulated signal at the locations Î is passed through a box-
car low pass filter h(n) to retain the zero frequency while
attenuating the rest of the spatial frequencies. Afterward, the
coefficient of the zero frequency is estimated as the mean of
the first K samples of the filtered signal.

C. Discussion

Based on predefined values for N , K, σ̄, t̄, σ̂ and t̂, the
set of indices for the range and azimuth sampling can be
precomputed based on (11) and (12). Therefore, only samples
at locations given by (11) and (12) enter the block diagram of
Fig. 2. The range dechirp is performed on the undersampled
data.

The number of azimuth samples needed in the above process
based on (11) and (12) is O(K log2N) [8], which is much
smaller than the number of azimuth Nyquist sampling points
N . The same method can also be applied to the range com-
pression. The number of range samples needed by the SFT-RD
algorithm is O(K log2Nt) which is much smaller than the
number of range Nyquist sampling points Nt. The computa-
tional complexity for the proposed method is O(K log2K)
which is also much smaller than that of the RD algorithm
O(N log2N) in azimuth direction and O(Nt log2Nt) in range
direction.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the
proposed SFT-RD imaging algorithm on synthetic SAR data
and compare it with the classical RD imaging algorithm.

We set the speed of light and carrier frequency be c =
3 × 108 and fc = 109 Hz repectively. The radar at the
initial position pr(0) = [10000

√
2, 0, 10000

√
2] (m) moves

at the speed of v = [0, 100, 0] m/s. The aperture time in the
azimuth direction is Tn = 0.5 seconds with the pulse repetition
frequency PRF = 1024. In addition, the pulse duration in
range direction is Tc = 5×10−6 seconds with the bandwidth of
the chirp signal B = 2.048× 108 Hz and sampling frequency
in fast-time Fsr = B.

A single point target is simulated in the first example. The
contour view of the imaging results using RD with full data
and SFT-based RD with undersampled data are shown in Fig.
4a, Fig. 4d respectively. The SFT-based RD used only 10%
of the data used by the FFT-based RD. From Fig. 4, it can
be clearly observed that the point scatter using the SFT-based
RD algorithm can be as well focused as the RD algorithm,
which suggests that the SFT-based RD algorithm has the same
resolution as the RD algorithm.
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Imaging Results using SFT
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Fig. 4: (a) and (d) show contour representations of the imaging
results using RD with full data and STF based RD with
undersampled data respectively. (b) and (c) show the range
and azimuth profiles respectively for the simulated point target
along the axis for (a). (e) and (f) show the range and azimuth
profiles respectively for the simulated point target along the
axis for (c).

Twelve point targets are generated in the second example
with randomly assigned unit power complex magnitude. Fig.
5a is the simulated raw data while Fig.5b shows the under-
sampled data used in the SFT-based RD. Fig. 5c illustrates
the reconstruction of the twelve point targets with the full
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Rawdata
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Rawdata with undersampling
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Imaging Results using RD with full samples

 Range
470 480 490 500 510 520 530 540 550 560

 A
z
im

u
th

240

250

260

270

280

290

300

(c)

Imaging Results using SFT
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Fig. 5: Twelve point targets: (a) simulated full data (b)
simulated data with undersampling (c) imaging results using
RD with full samples (d) STF based RD imaging results with
undersampled data.

data using RD and Fig. 5d shows the reconstruction of point
targets with undersampled data (25% is used) using the SFT
based RD algorithm. It is obvious that our proposed method
produces the same resolution as the RD algorithm while using
much fewer data.

V. CONCLUSION

In this paper, we proposed a SFT based RD algorithm
for SAR imaging in a side-look spotlight mode. Our pro-
posed method enables the SAR imaging to maintain the
same resolution as the RD algorithm with computational

complexity O(K log2K) while only employing O(K log2Nt)
and O(K log2N) samples in range and azimuth direction
respectively. The proposed method significantly reduces the
burden brought by the imaging operations with a large amount
of data.
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