2016 24th European Signal Processing Conference (EUSIPCO)

Resource-Constrained Implementation and Optimization of a Deep Neural Network
for Vehicle Classification

Renjie Xie*, Heikki Huttunen*, Shuoxin Lin®, Shuvra S. Bhattacharyya*f, Jarmo Takala™
* Department of Pervasive Computing
Tampere University of Technology, Finland
f Department of Electrical and Computer Engineering
University of Maryland, College Park, USA
Email: {renjie.xie, heikki.huttunen} @rut.fi, {slin07, ssb}@umd.edu, jarmo.takala@tut.fi

Abstract—Deep learning has attracted great research interest
in recent years in many signal processing application areas.
However, investigation of deep learning implementations in
highly resource-constrained contexts has been relatively unex-
plored due to the large computational requirements involved. In
this paper, we investigate the implementation of a deep learning
application for vehicle classification on multicore platforms
with limited numbers of available processor cores. We apply
model-based design methods based on signal processing ori-
ented dataflow models of computation, and using the resulting
dataflow representations, we apply various design optimizations
to derive efficient implementations on three different multicore
platforms. Using model-based design techniques throughout the
design process, we demonstrate the ability to flexibly experi-
ment with optimizing design transformations, and alternative
multicore target platforms to achieve efficient implementations
that are tailored to the resource constraints of these platforms.

Keywords-Dataflow, deep learning, model-based design, mul-
ticore platforms, signal processing systems.

I. INTRODUCTION

The proliferation of research on deep learning applications
and concurrent advances in application areas for ubiqui-
tous embedded computing, such as automotive embedded
systems and the Internet of things, motivate the investi-
gation of design methodologies for deploying deep neural
network (DNN) systems on resource-constrained embed-
ded platforms. Based on this motivation, we investigate
in this paper the resource-constrained implementation of
deep learning applications, using vehicle classification as
a concrete case study throughout our investigation. As a
core part of the design methodology developed in this
paper, we apply model-based design methods based on
signal processing oriented dataflow models of computation,
and we employ the resulting dataflow representations to
implement, experiment with, and iteratively optimize deep
learning vehicle classification on three different multicore
platforms using limited numbers of processing cores.

More specifically, this paper introduces a unified method-
ology for modeling, mapping, and transforming deep-
learning implementations using dataflow techniques, along

978-0-9928-6265-7/16/$31.00 ©2016 |IEEE

with methods to integrate the hyperparameter tuning and
simulation processes of deep learning system design with the
proposed dataflow-based implementation approach. While
this methodology is not specific to any particular application
area, it is particularly well suited to embedded signal, image,
and video processing applications, where dataflow-based
design is especially relevant (e.g., see [1]). As mentioned
above, we employ vehicle classification as a case study
to concretely demonstrate the methodology throughout the

paper.

II. RELATED WORK

Various designs for deep neural networks have been
proposed in the literature (e.g., see [2], [3], [4], [5]). Our
work presented in this paper is complementary to these
works as it develops methods for modeling and mapping
different network architectures into efficient embedded im-
plementations.

TensorFlow is a recently-introduced design framework
for large-scale machine learning systems, including systems
that employ DNNs [6]. While TensorFlow applies dataflow
modeling principles as we do in our work, our work is
distinguished by its emphasis on resource-constrained im-
plementation and on flexible experimentation with alter-
native dataflow modeling, scheduling, and transformation
techniques, which are important for exploring the complex
design spaces involved in embedded DNN implementation.

In contrast to TensorFlow, which applies specialized
dataflow modeling and scheduling techniques, our pro-
posed design methodology promotes experimentation with
dataflow modeling and scheduling aspects as an integral part
of the design process. Such experimentation is promoted by
our use of the lightweight dataflow environment (LIDE) [7],
which we describe further in Section IV. Additionally, our
emphasis on formulating the DNN design process in terms
of abstract dataflow principles and associated scheduling
techniques helps to promote future integration of methods
developed in our work with arbitrary dataflow-based design
tools for signal processing system design (e.g., see [1]

1862

2016 24th European Signal Processing Conference (EUSIPCO)

for coverage of this diverse and important class of tools),
including — but not limited to — TensorFlow.

III. DNN TOPOLOGY FOR VEHICLE CLASSIFIER

The deep learning application that we focus on in this
paper is that of image-based recognition of vehicles. In
particular, we develop DNN implementations for automatic
discrimination among four types of vehicles — bus, truck,
van and car. For this application, we build on the DNN
network structure derived in recent work on DNN-based ve-
hicle classification [8], and we go beyond this previous work
by investigating aspects related to the efficient embedded
implementation of this structure.

Using Caffe [9], we apply random search to optimize the
selection of hyperparameters. After a series of search itera-
tions using 50 sets of randomly-generated hyper-parameters,
we derive the optimized set of hyperparameters for our
vehicle classification application.

= L 7 O TRUCK
s @ P
X = \ \I O caAR
. K \. / \ O Bus

CONVL conv2
96 % 96 48x48 24x24 DENSEl: DENSE2: OUTPUT:
3 channels 32FfM 32FM 100Feat 100 Feat 4 likelihoods

0 |

Figure 1. The structure of the proposed network.

The DNN architecture (Figure 1) is composed of five
layers — two convolutional layers, followed by two dense
layers, and finally, the classifier layer. The first layer consists
of three channels — corresponding to red, green and blue
(RGB) color channels — of the input image that are each
convolved into 32 feature maps and then maxpooled to
48 x 48 resolution. Here, each input channel has dimensions
96 x 96. In the second layer, the sets of 32 feature maps
are convolved again and then downsampled to 24 x 24
with maxpooling. The third and fourth layers are two fully
connected layers with 100 nodes each. The output layer
performs a mapping from 100 features to 4 class likelihoods
using a softmax operator. Between pairs of adjacent layers,
Rectified Linear Unit (ReLU) nonlinearity is applied.

For more details on the underlying DNN configuration
from which this system is derived, we refer the reader to [8].

IV. LIGHTWEIGHT DATAFLOW DESIGN AND
IMPLEMENTATION

After deriving the hyperparameters as described in Sec-
tion III, we implement the DNN system in MATLAB for
simulation and testing purposes. A primary objective of
this step in connection with our overall embedded system
design process is to collect results from each layer so that
the embedded implementation for each layer can be tested
in isolation in addition to performing complete, system-
level tests of the target implementation. Such layer-by-layer

testing helps to build up the implementation incrementally,
and localize the causes of test failures to provide for more
rapid design iterations.

After developing the MATLAB-based simulation model
for our DNN-based vehicle classification system, we pro-
ceed to develop an initial dataflow-based implementation,
which will be employed as a starting point to evaluate the
system on candidate multicore platforms, and iterate on the
design through optimizing dataflow graph transformations
that improve implementation performance.

To develop and iteratively optimize our dataflow-based
implementation, we employ the lightweight dataflow envi-
ronment (LIDE), which is a dataflow-based programming
environment that allows signal processing system designers
to apply and experiment with dataflow modeling approaches
relatively quickly and flexibly in the context of existing
design processes [7], [10]. In particular, we employ LIDE-
C, which is a part of the LIDE environment that is designed
for use with C as the language for implementing dataflow-
based software components (actors). LIDE-C provides ap-
plication programming interfaces (APIs) that can be used
when developing software modules using C such that the
modules can be integrated together systematically as actors
in an enclosing dataflow graph. This allows complete signal
processing systems, such as our targeted DNN-based vehicle
classification system, to be constructed as dataflow-based
signal flow graph implementations where the actors are
realized in C. Our use of LIDE-C in this work, as compared
to other variants of LIDE, is motivated by the important role
of C in embedded software implementation. For more details
on LIDE, we refer the reader to [7], [10].

In LIDE, as in other related dataflow environments, a
signal processing application is represented as a directed
graph in which the vertices (actors) represent computational
tasks, and each edge corresponds to a first-in, first-out
(FIFO) communication channel that buffers data as it passes
from the output of one actor to the input of another.

As a first step in formulating the overall dataflow model
for the DNN system, we convert the diagrammatic sketch of
Figure 1 into the block diagram shown in Figure 2.

Although this block diagram, when its hierarchical repre-
sentation is flattened, encompasses thousands of individual

convl] conv2
maxpoolingl

(Convolution) I (Convolution)
4’ kernel size: 5 »jkencldize:2 > - kernel size: 5
stride: 2 pad: 0

tride: 1 pad: 2 stride: 1 pad: 2

maxpooling2
»| kernel size: 2

ip3
stride: 2 pad: 0 (InnerProduct)
L._ o st | [prob |
m (InnerProduct) | | (Softmax) | prob

Block diagram representation of the DNN system.

ip4
(InnerProduct)

Figure 2.

1863

2016 24th European Signal Processing Conference (EUSIPCO)

ACTORS:

. CONV1_SFM

[] CONV2_SFM

DENSE_LAYER_1

DENSE_LAYER_2

LAST_LAYER

Figure 3.

Top-level dataflow model.

signal processing blocks (actors), there is a great deal of
regularity in the way the blocks are instantiated and con-
nected. Such regularity can be exploited in deriving LIDE-
C designs in the form of compact, parameterized dataflow
graph implementations that designers can efficiently analyze
and manipulate (e.g., see [11]). The block diagram in
Figure 2 incorporates a total of 10 different types of actors,
which are summarized as follows.

e Read Channel: this actor decomposes an input image
stream into separate RGB channels, where each channel
carries 96 x 96 matrices as its basic type.

e Convolutional Actor: this actor performs a convolution on
two arrays of inputs, which arrive through two input FIFOs,
and outputs an array of the same size and dimensionality as
the inputs.

e Maxpool: this actor performs a form of nonlinear down-
sampling, where the input image is partitioned into sub-
regions of non-overlapping rectangles, and the maximum
value for each such sub-region is produced on the actor
output.

e ReLLU: This actor performs the function f(x) = maz(0, x)
to derive an output value from each input value x. This is
an important nonlinear function that is applied in DNNs.

e Softmax: This actor performs the operation a =
exp(n)/sum(exp(n)) across the net inputs of a given layer.
e Write Actor: writes data to a given text file.

e All_to_one : This actor concatenates multiple smaller input
matrices into a larger output matrix (e.g., three 3 x 3 matrices

e
B S Actors:

B @ Convolution
S

e S

e @ adaion

@ Maxpool

Subgraph_conv2_SFM

(b) conv2_SFM

. Subgraph_convl_SFM

(c) convl_SFM

Figure 4. Internal (nested) dataflow representations for different types of
hierarchical actors.

combined into a single 9 X 3 matrix).

e Broadcast Actor: makes copies onto multiple output ports
of matrices that are received on its single input port.

e Multi_mtx_add Actor: This actor performs elementwise
addition across multiple input matrices to produce a single
“sum matrix”.

e Matrix Multiplication.

Figure 3 shows the dataflow model that is constructed
through the process of transforming abstract actors from the
block diagram representation (Figure 2) into concrete, LIDE-
C-based actor implementations. All of the actors shown in
Figure 3 are hierarchical actors; internal functionalities for
these hierarchical actors are shown in Figure 4.

V. DNN DATAFLOW GRAPH TRANSFORMATIONS

In this section, we describe a selected subset of the
transformations that we apply on our LIDE-C-based DNN
implementation to improve its performance on the targeted
multicore platforms. These transformations exploit the or-
thogonalization of actor implementation, task scheduling,
and buffer management in LIDE, which allow for rapid
prototyping of alternative implementation strategies for the
given dataflow graph [10]. While these transformations are
not new design optimizations in and of themselves (e.g.,
see [12], [1], their integration into resource-constrained
multicore DNN implementations, and their application based
on lightweight dataflow design principles are novels aspect
of this work.

1864

2016 24th European Signal Processing Conference (EUSIPCO)

Broadcast optimization. In this optimization, we transform
the copying of data values associated with each broadcast
actor into in-place read and write operations on a single
buffer, where all consuming actors read from this single,
shared buffer. This eliminates large numbers of data copy-
ing operations that result from conventional dataflow-based
implementations of the broadcast actors.

Simplify connections in the first two layers. By adding
three actors — two all_to_one actors and one broadcast actor
— between the first two convolutional layers, we are able
to decrease the complexity of the dataflow and improve the
efficiency of the connections between these layers.
In-place operations for images and matrices. Instead of
loading images from actor input FIFOs into internal storage
for the actors, we utilize image data directly from the input
FIFOs. Similarly, groups of matrix additions are performed
in place on actor input FIFOs using the multi_mtx_add actor
described in Section IV, which avoids data transfers between
actors when the additions are performed using groups of
smaller-scale matrix addition actors.

Clustering into threads. In this transformation, we clus-
ter (or group together) subgraphs within the overall DNN
dataflow graph to be executed as concurrent threads in
the target multicore implementation. This enables parallel
execution of DNN subsystems when multiple cores are
employed. Execution within the subgraph for each thread is
managed by a LIDE-C-based dataflow graph scheduler that
is dedicated to the thread, and the different schedulers for
the different threads therefore execute concurrently for the
overall DNN system. We employ pthreads as the interface
for implementing the thread-based concurrent execution of
the dataflow subgraph schedules [13]. In our experimentation
with alternative clusterings, we find that parallelization of
feature map computations is especially effective in improv-
ing performance on the target platforms.

VI. FUNCTIONAL VALIDATION

Functional validation is a critical step before applying
design transformations and for automatically validating the
correctness of each implementation iteration as different
transformations are applied. For this purpose, we apply the
DSPCAD Integrative Command Line Environment (DICE),
which provides language- and platform-agnostic features for
testing of embedded signal processing software [14], [15].

Figure 5 gives an illustration of the DICE-based organiza-
tion and associated directory hierarchy of the software and
test modules for the DNN system design. For further details
on development and testing of signal processing systems
using DICE, we refer the reader to [15].

VII. EXPERIMENTAL RESULTS

Figure 1 shows the processing times measured from
executing three versions of our DNN system for vehicle
classification: (1) simulation implementation in MATLAB;

autotest- / \ matlab

output

doc test src e

test_dl_graph

test_dI_lide

_c_softmax - parameter 5 test_dI_

- files transformation

test_dI_design test_dI_transfor -
- mation_01

YT

test_dl_design

test01 ‘

README !

Figure 5. DICE-based design organization of the DNN system.

(2) unoptimized LIDE-C implementation; and (3) LIDE-C
implementation with the optimization techniques discussed
in Section IV and Section V. Both versions (2) and (3)
include the effects of turning on C compiler optimizations,
but differ in whether or not the higher level, dataflow
transformations described in Section IV and Section V are
applied.

Here, measurements are shown both for ¢;, and ¢-, where
tr, is the time to load the DNN parameters obtained from
training, and ¢¢ is the time required for classification of a
single input image once the training parameters have been
loaded. Since the cost of loading data is incurred only
once, at system setup time, the value of ¢{c is generally
more important for our design context. The results reported
in Figure I are derived using a single-core, Intel Core i5-
4248U processor with 8 GB memory. The results indicate
that applying model-based optimization techniques in LIDE-
C significantly improves the overall single-core performance
compared to both the simulation version and the unopti-
mized (initial) LIDE-C version, while also exposing high-
level dataflow structure that can be exploited to map the
application onto multicore configurations.

: LIDE-C LIDE-C
Time Matlab (not optimized) | (optimized)

tr,(sec) 76.7 1.6 L5

tc(sec) 3.6 448 27

Table T
SINGLE-CORE PROCESSING TIMES FOR THREE DESIGN VERSIONS.

With the aid of the clustering transformation described
in Section V, we then map the optimized LIDE-C imple-
mentation to parallelize the design for efficient execution
on various alternative multicore platform configurations.

1865

2016 24th European Signal Processing Conference (EUSIPCO)

The results in terms of classification time performance are
summarized in Figure II. These results quantitatively demon-
strate the utility of optimized LIDE-C implementations in
exploring complex design spaces for DNN systems involving
alternative multicore platforms, and in achieving further
performance improvement by exploiting parallelism in these
platforms.

Platforms Number of Cores | t.(sec)
Intel Core i5 1 2.7
4278 2 1.3
1 1.83
Two Six-core é igg

AMD Opteron .

2345 Processors 4 0.88
8 0.59
12 0.49
1 5.20
ARM Cortex-A15 5 > 6a
quad core 3 193
(Odroid XU3 Board) 7 1' 3

Table 11
CLASSIFICATION TIMES t MEASURED AFTER MAPPING THE
OPTIMIZED LIDE-C-BASED DNN IMPLEMENTATION ONTO VARIOUS
MULTICORE PLATFORM CONFIGURATIONS.

VIII. CONCLUSION

In this paper, we have presented a unified methodol-
ogy for modeling, mapping, and transforming deep-learning
implementations on resource-constrained platforms using
dataflow techniques. We have demonstrated this method-
ology using a design and implementation case study of
a deep neural network (DNN) for vehicle classification.
Using the lightweight dataflow environment (LIDE), we
have applied model-based design methods and using the
resulting dataflow representations, we have applied various
design optimizations to derive efficient implementations of
the targeted vehicle classification system on three different
multicore platforms with limited numbers of available cores.
Useful directions for future work include extending the
developed design methodology to perform joint investigation
of trade-offs among DNN complexity, classification accu-
racy, real-time implementation performance, and resource
requirements (cost).

IX. ACKNOWLEDGMENTS

This research was supported in part by the Finnish Fund-
ing Agency for Innovation on funding decision 40142/14
(FiDiPro — Advanced Dynamic Stream Processing for Net-
working and Big Data), and by CSC-IT Center for Science
Ltd. for computational resources.

REFERENCES

[1] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala,
Eds., Handbook of Signal Processing Systems, 2nd ed.
Springer, 2013.

(2]

(3]

(4]

(51

[6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

1866

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Proceedings of the Conference on Neural Information Pro-
cessing Systems, 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

Y. Petetin, C. Laroche, and A. Mayoue, “Deep neural net-
works for audio scene recognition,” in Proceedings of the
European Signal Processing Conference, 2015, pp. 125-129.

0. Gencoglu, T. Virtanen, and H. Huttunen, “Recognition of
acoustic events using deep neural networks,” in Proceedings
of the European Signal Processing Conference, 2014, pp.
506-510.

M. Abadi et al., “Tensorflow: Large-scale machine learning
on heterogeneous distributed systems,” Google Research,
Tech. Rep., November 2015, preliminary White Paper.

C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya, “A
lightweight dataflow approach for design and implementation
of SDR systems,” in Proceedings of the Wireless Innovation
Conference and Product Exposition, Washington DC, USA,
November 2010, pp. 640-645.

H. Huttunen, F. Yancheshmeh, and K. Chen, “Car type recog-
nition with deep neural networks,” ArXiv e-prints, February
2016, submitted to IEEE Intelligent Vehicles Symposium
2016.

Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” arXiv preprint arXiv:1408.5093, 2014.

C. Shen, W. Plishker, and S. S. Bhattacharyya, “Dataflow-
based design and implementation of image processing appli-
cations,” in Multimedia Image and Video Processing, 2nd ed.,
L. Guan, Y. He, and S. Kung, Eds. CRC Press, 2012.

N. Sane, H. Kee, G. Seetharaman, and S. S. Bhattacharyya,
“Topological patterns for scalable representation and analysis
of dataflow graphs,” Journal of Signal Processing Systems,
vol. 65, no. 2, pp. 229-244, 2011.

J. S. Kin and J. L. Pino, “Multithreaded synchronous data
flow simulation,” in Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, 2003.

B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads Pro-
gramming: A POSIX Standard for Better Multiprocessing.
O’Reilly & Associates, Inc., 1996.

S. Kedilaya, W. Plishker, A. Purkovic, B. Johnson, and
S. S. Bhattacharyya, “Model-based precision analysis and
optimization for digital signal processors,” in Proceedings
of the European Signal Processing Conference, Barcelona,
Spain, August 2011, pp. 506-510.

S. S. Bhattacharyya, W. Plishker, C. Shen, N. Sane, and
G. Zaki, “The DSPCAD integrative command line environ-
ment: Introduction to DICE version 1.1,” Institute for Ad-
vanced Computer Studies, University of Maryland at College
Park, Tech. Rep. UMIACS-TR-2011-10, 2011.

