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Abstract—Approximate Joint Diagonalization of a matrix set
can solve the linear Blind Source Separation problem. If the
data possesses a bilinear structure, for example a spatio-temporal
structure, transformations such as tensor decomposition can be
applied. In this paper we show how the linear and bilinear joint
diagonalization can be applied for extracting sources according
to a composite model where some of the sources have a linear
structure and other a bilinear structure. This is the case of Event
Related Potentials (ERPs). The proposed model achieves higher
performance in term of shape and robustness for the estimation
of ERP sources in a Brain Computer Interface experiment.

I. INTRODUCTION

Event-Related Potentials (ERPs) are transient brainwaves
with a fixed evoked spatio-temporal pattern ; their polarity,
shape, latency and amplitude are approximatively constant
across observations for a given class of stimuli evoking them.
The amplitude of ERPs is known to be very low compared to
the ongoing continuous background activity of the brain. For
many applications such as classification or clinical analysis,
one would like to retrieve both evoked and continuous sources
of the brain (Figure 1).

Blind Source Separation (BSS) is a fundamental framework
for modeling independent sources hidden in the observations.
BSS methods find major applications in telecommunication,
biomedical engineering, speech, audio and video processing
[1].

Let us consider the instantaneous linear mixture given by

x(t) = As(t) + n(t), (1)

where t is the time index, x(t), s(t) ∈ RN are respectively the
observation and source vectors, A ∈ RN×N is an invertible
unknown spatial mixing matrix, and n(t) ∈ RN is an additive
noise vector. In model (1) the fixed pattern is only spatial.
We can formulate the problem of estimating s(t) by finding a
spatial unmixing matrix B that solves ŝ(t) = BTx(t) where
the sources ŝ = P∆s are estimated up to a permutation
matrix P and a diagonal matrix (scaling) ∆ ambiguity ;
superscript (.)T is the transpose operator.

Approximate Joint Diagonalization (AJD) is a class of meth-
ods for solving the BSS problem relying on the diagonalization
of a set of symmetric matrices Rx(l) ∀ l ∈ {1, ..., L}, named
target matrices, containing statistics of the observation x. The
choice of the statistics (e.g. correlations, time-lagged covari-
ances, co-spectra, higher order cumulants, etc.) depends on
assumptions on the sources such as non-stationarity, spectral
coloration, non-Gaussianity, etc. [1], [2]. Indices l can stand,

Fig. 1. The composite model assumes that the observations are the superpo-
sition of evoked sources and continuous sources linked by the same spatial
mixing matrix A.

e.g., for delays τ in the case of covariances or for frequencies
f in the case of co-spectra, etc. [2]. Thus, the BSS problem
can be reformulated as

Rx(l) = ARs(l)A
T , (2)

where Rs(l) is a diagonal matrix containing the power of
the sources. We seek a matrix B that jointly diagonalizes all
matrices Rx(l) in (2) as much as possible (i.e., according to
some criterion)

Rŝ(l) = BTRx(l)B . (3)

AJD has been successfully used in source separation of
continuous electroencephalographic (EEG) sources [3] using
co-spectral as target matrices. More recently, [4] proposed to
add the covariance matrices of the estimated evoked activity
for the separation of Event Error Related Potential (ErrP)
sources. In ERPs, the evoked sources have both a spatial and
a temporal (bilinear) fixed structure such as

Xk = ASkE
T + Nk , (4)

where matrices Xk ∈ RN×T are a set of observation matrices
with k ∈ {1, ...,K}, E ∈ RT×N is an unknown temporal mix-
ing matrix and Sk ∈ RN×N is a diagonal matrix containing
the amplitude of the sources and Nk ∈ RN×T is a noise term.
The difference with the linear BSS case (1) is that the bilinear
model has now also a fixed temporal structure, contained in
E, which can be modulated in amplitude across observations
by Sk. It is a bilinear BSS problem with
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Ŝk = BTXkD , (5)

where now two unmixing matrices B and D are required for
diagonalizing as much as possible Ŝk. A proposed algorithm
solved it by Approximate Joint Singular Value Decomposition
(AJSVD) in [5] considering A and E orthogonal. More gen-
erally, the model can be solved by tensor rank decomposition,
i.e. Candecomp/PARAFAC (CP) [6].

Such model was used for the extraction of the ERP sources
in functional Magnetic Resonance Imaging (fMRI) [7] and a
solution using AJD was proposed in [8] by diagonalizing both
spatial and temporal covariance matrices. Recently, CP decom-
position was used in addition to Extended Kalman Filter in [9]
with successful estimation of the electroencephalographic ERP
at single trial level.

However, in real data such as ERP, the observation Xk is
an additive process (see Figure 1) of both continuous activity
which is separable by the linear model (3), and evoked activity,
which is separable by the bilinear model (5). Thus trying a
linear BSS (respectively bilinear BSS) method to extract the
continuous (respectively evoked) sources will fail because the
model neglects the contribution of the evoked (respectively
continuous) sources. Eventually none of these models can find
the true unmixing matrices B,D.

To go beyond those limitations, we propose in Section II-A
a composite model that can be used to solves simultaneously
the AJD for (1) and a bilinear AJD (BAJD) for (4). We name
the proposed model composite AJD (CAJD). We give the
corresponding cost functions for AJD, BAJD and CAJD in
Section II-B and a closed-form minimizer of the respective
cost function by Gauss Planar Transformation (GTP) in Sec-
tion II-C, using yet a novel Jacobi-like algorithm. We compare
the proposed models in the estimation of matrices B and E
on simulated data in Section III-A and we compare BAJD vs.
CAJD on EEG ERP in Section III-C.

II. METHODS

A. Composite Approximate Joint Diagonalization

One would like to complete the full source separation by
jointly diagonalize BTRx(l)B and BTXkD where B and
D are respectively the spatial and temporal unmixing matrices
supposed invertible. Note that if E in model (4) is furthermore
supposed orthogonal and its estimation is not of interest for the
user, one can always consider the classical AJD framework as
XkX

T
k = ASkEETSkA

T = ARs(k)AT ∀k ∈ {1, ...,K}
(with Sk diagonal), coming back to (2).

B. Cost Functions

In the linear model case given by (3) and using the standard
AJD framework, we consider the cost function f ,

f(B) =
L∑
l=1

∥∥off(BTRx(l)B)
∥∥2
F
, (6)

where matrices Rx(l) correspond to the chosen statistics of
Xk and off(.) is the off-diagonal operator that set all diagonal
elements of the argument to zero.

For the bilinear model (4), BAJD uses a similar cost
function fb, where b stand for bilinear, given by

fb(B,D) =
K∑
k=1

∥∥off(BTXkD)
∥∥2
F
, (7)

where matrices Xk correspond to observations in spatio-
temporal domain (i.e., for ERP, the raw potential and not their
covariance) and B and D are their corresponding spatial and
temporal unmixing matrices, respectively.

Finally for the composite model introduced in the previous
section, the corresponding cost function fc, where c stand for
composite, is given by

fc(B,D) = α f(B) + (1− α)fb(B,D) , (8)

where α ∈ [0, 1] is a fixed ponderation weight which expresses
a preference among the two models i.e linear (α > 0.5) or
bilinear (α < 0.5). In this work, we consider α = 0.5.

C. Optimization by Gauss Planar Transformations
To solve the problem for the three functions we consider, we

propose a novel optimization scheme inspired by eigenvector
Jacobi and elementary Gauss elimination methods, named
Gauss Planar Transformation (GPT). Note that we choose the
same optimization scheme for all methods in order to compare
the models fairly. Starting from initial guess matrices B and D
(see Section II-D), we perform repeated planar non-orthogonal
transformations on the columns of the unmixing matrices.
Given i and j in {1, .., N} with i 6= j, a (i, j)-transformation
is defined as

bi ← bi + βbj
di ← di + γdj

where bi (respectively di) denotes the ith column of B
(respectively D). A sweep of the algorithms is then to perform
(i, j)-transformations for all i and j in {1, .., N} with i 6= j.
We seek parameters β and γ that minimize the cost function
for each (i, j)-transformation. Such a transformation acts only
on the row i and the column i of the matrices Rx(l) and/or
Xk. A solution would then to find β and γ in order to
minimize all those elements (except the diagonal one) as it is
done in [10]. Another way is to only minimize the elements
(i, j) and (j, i) as in [11]. We choose the latter approach as
this solution always converges faster and does not affect the
performance (data not shown). Given i and j, this leads, in
the AJD case (3), to minimize

fij(β) = 2
L∑
l=1

((bTi + βbTj )Rx(l)bj)
2

For the BAJD model in (5), we have to minimize
fijb (β) =

K∑
k=1

((bTi + βbTj )Xkdj)
2

fijb (γ) =
K∑
k=1

(bTj Xk(di + γdj))
2 .
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Finally, if we consider the CAJD model proposed in Section
II-A, the functionals to minimize are

fijc (β) = (1− α)
K∑
k=1

((bTi + βbTj )Xkdj)
2

+ 2α
F∑
f=1

((bTi + βbTj )Rx(l)bj)
2

fijc (γ) = (1− α)
K∑
k=1

(bTj Xk(di + γdj))
2

.

All those functions are second order polynomials with closed
form minimizers. Thus, for AJD with cost function (6), the
optimal β is given by

β =

K∑
k=1

(bT
i Rx(l)bj)(b

T
j Rx(l)bj)

K∑
k=1

(bT
j Rx(l)bj)2

.

For the BAJD model with cost function (7), optimal β and γ
are given by

β =

K∑
k=1

(bT
i Xkdj)(b

T
j Xkdj)

K∑
k=1

(bT
j Xkdj)2

γ =

K∑
k=1

(bT
j Xkdi)(b

T
j Xkdj)

K∑
k=1

(bT
j Xkdj)2

.

Finally, for our composite model CAJD with the cost function
(8), optimal β and γ are given by

β =
(1−α)

K∑
k=1

(bT
i Xkdj)(b

T
j Xkdj)+2α

F∑
f=1

(bT
i Rx(l)bj)(b

T
j Rx(l)bj)

(1−α)
K∑

k=1

(bT
j Xkdj)2+2α

F∑
f=1

(bT
j Rx(l)bj)2

γ =

K∑
k=1

(bT
j Xkdi)(b

T
j Xkdj)

K∑
k=1

(bT
j Xkdj)2

.

D. Initialization

The initialization is of paramount importance for Jacobi-like
algorithms. While a working initialization can be the identity
matrix, we use singular value decomposition:

X̄T = UΛV T , (9)

where X̄ is an estimation of the evoked activity such as the
arithmetic average X̄ =

∑K
k

1
KXk or by regression based

estimation [12]. We set{
B0 = U

D0 = Ṽ T
(10)

where Ṽ ∈ RT×N is the reduced right-handed component
of the SVD-decomposition containing only the N singular
vectors with the largest N associated singular values in Λ.

III. RESULTS

A. Simulations

In order to estimate the performances of CAJD compared
to AJD and BAJD on the model that we consider, we first

performed simulations within Matlab (c) environnement.
To analyze the quality of the spatial and temporal unmixing

matrices found by both methods, we use the Moreau-Macchi
index IM-M [13] defined as

IM-M = 1
2(n−1)

 n∑
i=1

 n∑
j=1

|Hij |

max
1≤j≤n

|Hij | − 1


+

n∑
j=1

 n∑
i=1

|Hij |

max
1≤i≤n

|Hij | − 1


, (11)

where H equals BTA (respectively ETD), with B (re-
spectively D) the estimated spatial (respectively temporal)
unmixing matrix and A (respectively E) the true spatial
(respectively temporal) mixing matrix.

We generated K = 100 matrices Xk of dimension N × T
with N = 16 and T = 128 according to

Xk = ASkE
T + σNk , (12)

where A is the spatial mixing matrix being non-orthogonal
generated randomly with i.i.d. elements normaly distributed
N (0, 1). E is the temporal mixing matrix with i.i.d. elements
generated from a multivariate normal distribution with a ran-
dom covariance matrix. We controlled the non-orthogonality
of A and E by constraining their condition number with
respect to inversion between 1 and 20 (excluded). Matrices
Sk are diagonal with i.i.d. elements randomly drawn from a
normal distribution N (0, 1). σ is a free parameter defining the
noise level and Nk are noise matrices with elements drawn
independently from a normal distribution N (0, 1).

In parallel, we generated L = 100 matrices Rx(l) of
dimension N ×N according to

Rx(l) = ARs(l)A
T +

σ2

2
(Nl + NT

l ) ,

where A and σ are the same as before. Matrices Rs(l) are
diagonal with i.i.d. elements generated from a chi-squared
distribution with two degrees of freedom. The symetrized
noise matrices Nl are with elements drawn independently
from a normal distribution N (0, 1).

Fig. 2. Moreau-Macchi criteria on the matrix B. Average performance of
GPT algorithms on 100 independant realizations (a) without noise (σ = 0)
and (b) with noise (σ = 0.1).
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TABLE I
MOREAU-MACCHI CRITERION AFTER CONVERGENCE. 100 INDEPENDENT

DRAWS OF MATRICES A AND E WITH σ = 0.1.

median 10% quantile 90% quantile
B CAJD 1.06e−2 4.79e−2 2.69e−2

BAJD 3.12e−1 1.21e−1 7.09e−1

AJD 3.26e−1 2.87e−1 3.78e−1

D CAJD 4.26e−1 1.24e−1 8.74e−1

BAJD 4.17e−1 1.28e−1 8.81e−1

AJD was performed on the matrices XkX
T
k and Rx(l)

and B was initialized with the identity matrix. BAJD was
performed on the matrices Xk. B was initialized in the same
way as AJD and D with an orthogonalized random matrix.
CAJD was performed on both the matrices Xk and Rx(l)
with the same initialization as BAJD.

As expected, because E is far from being orthogonal, AJD
gives results far from the true solution, see Figure 2. Moreover,
while we can not differentiate the performance of BAJD and
CAJD in the case of no noise, the convergence is always
better for CAJD is presence of noise for the estimation of
B (see Table I). The difference in the estimation of E is not
significant between BAJD and CAJD because the simulated
data respect the bilinear model.

Thus, CAJD displays overall better performances as com-
pared to both AJD and BAJD on the estimation of B. Our
model is equivalent to BAJD for the estimation of D. Next,
we will test both BAJD and CAJD on real data.

B. Procedures

1) Data Acquisition: EEG signals were acquired during
sessions of two subjects playing simultaneously to a P300-
based BCI [14]. EEG data were acquired with 32 active wet
electrodes using USBamp amplifiers [g.Tec, Graz, Austria]
with a sample rate Fs=512 Hz. Ground was an active electrode
on Fz and reference was a passive electrode clip on the right
earlobe. The ERP triggers were synchronized with the signals
with a supplementary analog channel to minimize the jitter.

2) Preprocessing: From the recorded signals, we se-
lected 16 representative electrodes from the first subject
(N=16): Fp1-Fp2-F5-AFz-F6-T7-Cz-T8-P7-P3-Pz-P4-P8-O1-
Oz-O2. The signals were filtered by a fourth order forward-
backward Butterworth band pass filter [1-20] Hz and down-
sampled at Fs=128Hz. The signals were segmented into trials
Xk of 1s (T=128) starting at each visual stimulation. Each trial
was labeled as TARGET (TA), i.e. with possible appearence of
P300 potential, or NON-TARGET (NT) for the two different
experimental conditions.

3) Target Matrices: We propose to estimate the evoked
activity X̄z by arithmetic ensemble average of Xk by boot-
strapping 50 new ensembles: 40 ensemble averages of 50
observations in the condition TA; 10 ensemble averages of
50 observations in the condition NT.

Thus for AJD (6), we propose target matrices Rx(l) ∈
{CX̄z

,Cf} where Cf are co-spectral matrices computed by

Fig. 3. Left: columns of Êi normalized with L2-norm. Right: columns of Âi

projected on a topographic scalp map in absolute amplitude and normalized
with . Highlight : Source c06 corresponds to P3b, source c11 corresponds to
early visual complex.

Bartlett’s average [15] over the K observations for frequencies
of interest, i.e. f ∈ {1, 1.5, 2, ...20}Hz for a total of 39 co-
spectral matrices. CX̄z

are the empirical covariance matrices
of the X̄z∀z ∈ {1, ..., 50}. For BAJD (7), we diagonalized
X̄z . Eventually, for CAJD we replace Xk by X̄z and Rx(l)
by Cf in (8).

4) GPT initialization: The initialization of B,D was made
by a SVD step such as proposed in Section II-D with X̄
estimated with the method in [12] (no subspace reduction).

C. ERP Source Estimation

1) Source Separation: To asses the quality of the source
separation obtained by CAJD, we compared the estimated
sources according to their spatial and temporal contributions.
We projected the columns of Â = B−1 on a scalp topographic
map. The temporal source pattern is given by the columns
Ê = D+ where superscript (.)+ denotes the Moore-Penrose
pseudoinverse.

In Figure 3, we present the resulting estimation obtained
by CAJD on a representative subject of our dataset. By visual
inspection, we can observe that several sources correspond to
evoked potential: a) c11, the early visual complex, generated
in the occipital (visual) cortex. This is common to conditions
TA and NT but with a much lower amplitude in NT. b) c06
the P3b component of the ERP generated in parietal locations
and with maximum amplitude around 300ms after the stimulus
[16].

2) Source Quality: We focus on the quality of the estimated
source associated to the evoked activity P3b of BAJD and
CAJD in condition TA. Figure 4 displays their respective
estimation (described in the following) at the single trial level
and they are compared to the observation Xk.
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Fig. 4. TA condition: Data Xk (left) and backprojected P3b source (13) for
CAJD (center) and BAJD (right). Their respective spatial distribution is shown
on top. y-axis are in relative amplitude. Thin grey line: observation (K=100).
Thick black line: Ensemble average. Grey area: 10% and 90% quantiles,
greater is the area, larger is the variability.

For a given observation Xk, we estimated the corresponding
power of the sources in Ŝk and backprojected the i-th source
in the electrode domain such as:

X̂k,i = ÂiŜkÊ
T
i (13)

where X̂k,i is the projection of the i-th component in the
sensor domain. Âi and Êi are respectively the spatial and
temporal contributions of the i-th estimated component. The
projected activity of the source P3b in Figure 4 shows that
the sign and shape of the source is properly estimated for
both methods. The polarity of the estimated P3b of CAJD
is consistant over condition TA while it is not for condition
NT (data not shown here). Interestingly, the CAJD is more
robust to outliers as compared to BAJD, particulary in the
early and late latency (before 250ms and after 700ms). Under
this evidence, CAJD seems to estimate much better the real
(physiological) source of the P3b.

IV. CONCLUSION

We have described a new approach for extracting event-
related sources by mining the bilinear (spatio-temporal) struc-
ture of the data with a composite model of both AJD and
BAJD named Composite Approximate Joint Diagonalization
(CAJD). We proposed to minimize the off-diagonal criteria by
a novel algorithm, i.e. Gauss Planar Transformation (GPT).
We provided the close-form approximate minimizer for the
three models in the framework of GPT. CAJD achieves better
performance than AJD and BAJD models on simulated data.

Moreover this method is relevant for single trial source extrac-
tion in the case of Event-Related Potentials. We believe that
CAJD could be applied on various situations such as denoising
or classification for Brain Computer Interfaces. Eventually, the
CAJD is not restricted to brain data but can be used for all
combinaison of linear and bilinear structure whenever their
relation is known.
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