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Abstract— In this paper we present the Deep-LMS, a novel
algorithm for crosstalk cancellation in DSL. The Deep-LMS
crosstalk canceler uses an adaptive non-diagonal preprocessing
matrix prior to a conventional LMS crosstalk canceler. The role
of the preprocessing matrix is to speed-up the convergence of
the conventional LMS crosstalk canceler and hence speed-up the
convergence of the overall system. The update of the preprocess-
ing matrix is inspired by deep neural networks. However, since
all the operations in the Deep- LMS algorithm are linear, we
are capable of providing an exact convergence speed analysis.
The Deep-LMS is important for crosstalk cancellation in the
novel G.fast standard, where traditional LMS converges very
slowly due to the large bandwidth. Simulation results support
our analysis and show significant reduction in convergence time
compared to existing LMS variants.

Index Terms—Crosstalk canceler, DSL, LMS, G.fast.

I. INTRODUCTION

Digital Subscriber Line (DSL) is a family of technologies

that provide digital data transmission over unshielded twisted

pairs (UTP) of copper wires that were originally used for

telephone services. The performance of a DSL system may be

significantly degraded by the effect of crosstalk due to elec-

tromagnetic coupling between adjacent pairs. We distinguish

between two types of crosstalk: Near end crosstalk (NEXT)

and Far end crosstalk (FEXT). In DSL systems, NEXT is

avoided by using frequency division duplexing (FDD) [1],

or time division duplexing (TDD) [2]. FEXT suppression

is performed by spectrum shaping, advanced precoding or

crosstalk cancellation (also known as vectoring). A detailed

surveys of these techniques can be found in e.g., [3–5].

Gigabit over DSL was presented in a pioneering as early as

2003 paper [6]. Recently, G.fast standard was established [2]

aiming to provide aggregate data rates of up to 1Gb/sec over

short lines of up to 250m length. To that end, the spectrum

bandwidth was increased from 30MHz to 106MHz in G.fast

[2] or 212MHz in a more advanced version. However, the

increased bandwidth raised new challenges: At high frequen-

cies the channel matrix becomes non-diagonal dominant [7].

For vectored VDSL modems, the channel is weakly row-wise

diagonally dominated for the downstream. Hence, approximate

matrix inversion is used instead of the zero forcing (ZF)

linear precoding [7]. Alternatively adaptive least mean square

(LMS) based techniques for computing the precoder have
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been suggested [8–10]. Therefore, traditional DSL algorithms

for crosstalk cancellation/precoding become inefficient or con-

verge very slowly.

This paper focuses on designing a per tone adaptive

crosstalk canceler for the upstream transmissions in G.fast sys-

tems. Facing the tremendous amount of data to be processed

in each second1, low complexity algorithms are necessary. In

the literature, several adaptive algorithms exist that minimize

the mean square error (MSE) at the output of the crosstalk

canceler. Certainly, the most popular algorithm is the LMS

algorithm [11]. LMS is a stochastic gradient descent method

that under certain conditions converges to the Minimum MSE

(MMSE) solution. The popularity of the LMS algorithm is

mostly due to its simplicity. However, it is well known that a

bad conditioning of the input correlation matrix may lead to

slow convergence of the algorithm.

Being a stochastic gradient descent algorithm, the rate of

convergence of the LMS algorithm is controlled by the step-

size parameter μ. While small step size leads to a better pre-

cision of the steady state solution, large step size is preferable

for short transient state (fast convergence). However, if the

step size is too large the system becomes unstable, and the

algorithm may not converge at all. Thus, even for optimal

choice of the step size, the convergence rate strongly depends

on the statistics of the input signal [12–14].

Several LMS derivatives exhibit a faster convergence: In the

normalized LMS (NLMS)[15], a step-size that is normalized

with the power of the input is used (for low power inputs a

certain regulation parameter is typically used). In the diagonal

step-size matrix approach, a diagonal matrix is used instead

of the scalar step size μ [16]. Another family of algorithms

uses time variant step-size parameter such that μ = μ(n) is

made inversely proportional to the iteration number n [17]

The Leaky LMS algorithm that is developed similarly to the

conventional LMS but using a slightly modifying cost function

can be recast as a conventional LMS with slightly better

eigenvalues spread [18].

Another framework of solutions to accelerate the LMS

utilized a variety of averaging methods of the LMS coefficients

(see for example [19]). In the accelerated LMS, the LMS

component are updated off-line as in the conventional LMS,

1In G.fast there are 2048/4096 sub-carriers and discrete multitone (DMT)
symbol rate of 48kSymbol/sec [2].
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Fig. 1: The Deep-LMS crosstalk canceler.

but the actual filter that is applied to the data at each iteration

n is a certain averaged version of previous filters. It should

be mentioned that the averaging method show no asymptotic

improvement, i.e., when a decreasing step-size is used the

optimal rate of convergence of both systems are the same.

As mentioned above, at high frequencies, G.fast channel

matrices typically have no diagonal dominant structure. Hence,

at these frequencies the received signal’s covariance matrix

is badly-conditioned even in cases where the direct channel

gains of all users are of the same order. Therefore, using the

conventional LMS algorithms for FEXT cancellation in G.fast

systems is impractical due to the long convergence times.

In this paper, we propose a new algorithm dubbed Deep-

LMS, which enjoys almost the same complexity as the conven-

tional LMS algorithm but exhibits a much faster convergence.

The key idea behind the proposed algorithm is summarized

by: the asymptotic convergence of the LMS algorithm is

guaranteed if the step size is properly chosen. Thus, some

progress must be achieved by the LMS algorithm, i.e., if we

wait a sufficient long time. This progress is harnessed by

the Deep-LMS by updating the adaptive preprocessing matrix

such that the effective channel matrix becomes more diagonal

dominant. Hence, the convergence of the overall system is

accelerated.

The update of the preprocessing matrix inspired from deep

neural networks. However, since all the operations in the Deep-

LMS algorithm are linear, we are able to derive an exact

analysis. In particular, we prove that if the initial interference

plus noise ratio (SINR) of all users is sufficiently high, the rate

of convergence of the LMS crosstalk canceler is accelerated at

each update of the preprocessing matrix (assuming that there

are enough iterations between the updates).

II. SYSTEM MODEL

In this section we present the model of the received signal.

For simplicity of presentation, the model is described for a

single frequency bin. The operation at other frequency bins is

similar and independent of the operation at any other bin.

Let d[n] denote the transmitted data symbols at time n of

all N users at a certain frequency bin, where d[n] is drawn

with Gaussian i.i.d components and is assumed to be known

at the receiver. More formally, d[n] is a zero mean Gaussian

vector with a correlation matrix of E{d[n]dH [n]} = I and

E{d[n]dH [m]} = 0 for m �= n, where I is a N ×N identity

matrix and AH is the conjugate transpose of the matrix A.

The received signal at the output of the channel is

r̆[n] =
√
pHH [n]d[n] + ν̆[n], (1)

where p is the transmitted power (at that frequency bin),

H[n] = [h1[n],h2[n], · · · ,hN [n]] is the channel gain ma-

trix, ν̆[n] is an additive white Gaussian noise (AWGN),

ν̆[n] ∈ CN (
0, σ̆2

νI
)
. For convenience, rewrite equation (1)

by normalizing it with respect to the transmitting power:

r[n] = HH [n]d[n] + ν[n], (2)

such that r[n] = r̆[n]/
√
p, ν[n] ∈ CN (

0, σ2
νI
)

and σ2
ν =

σ̆2
ν

p .

III. THE CONVENTIONAL LMS CROSSTALK CANCELER

In this section we describe the model for a multi-user DSL

system with a conventional LMS crosstalk canceler. A LMS

crosstalk canceler for the upstream transmission of N users

can be easily implemented by N parallel LMS blocks. To

avoid confusion (for reasons that will become clearer in what

follows) we denote the input signal (vector) to the LMS by

u[n]. In the conventional approach, the LMS crosstalk canceler

is directly applied on the received signal, i.e., u[n] = r[n]. The

LMS crosstalk canceler (in each tone) can be described as a

matrix

W[n] � [w1[n],w2[n], · · · ,wN
[n]] . (3)

Hence, the output of the LMS crosstalk canceler can be written

as x[n] = WHu[n] and the LMS recursion can be written in

a matrix form as

W[n+ 1] = W[n]− 2μu[n]eH [n], (4)

where e[n] = d[n]− x[n].

IV. THE DEEP-LMS ALGORITHM

In this section, we present the novel Deep-LMS crosstalk

canceler. Unlike the conventional approach, in this algorithm

the LMS W[n] is not applied directly on the received signal.

Instead, the received signal is preprocessed by a matrix WP.

Hence, the input of the adaptive block can be written as

u[n] = WH
P [n]r[n]. (5)

The model is illustrated in Fig .1.

The algorithm is initialized with an identity preprocessing

matrix and the preprocessing matrix is updated only at certain

time instances. Denote the set of all update time instances

by U . The algorithm is summarized with the following set of

equations:

W[0] = I (6)

WP[0] = D̃[0] (7)

u[n] = WH
P [n]r[n] (8)

x[n] = WH [n]u[n] (9)

e[n] = d[n]− x[n] (10)

W̆[n+ 1] = W[n] + 2μu[n]eH [n] (11)

W[n+ 1] =

{
W̆[n+ 1] n /∈ U
I n ∈ U (12)
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WP[n+ 1] =

{
WP[n] n /∈ U
WP[n]W̆[n+ 1]D̃[n+ 1] n ∈ U (13)

where D̃[n] is the diagonal normalization matrix that satisfies

(HWP[n])i,i = 1 for all i. In other words, the values of the

diagonal of D̃[n] are the inverse of the direct effective channel

at the input of the LMS block2. The step size μ was selected

as in [14] (an explicitly expresion will be given in Theorem 1

after establishing the required notations). As can be seen, for

n /∈ U the preprocessing matrix remains unchanged and the

LMS block W[n] is updated exactly as in the conventional

LMS crosstalk canceler. For n ∈ U the preprocessing matrix

WP[n] is updated to include the combined effect of the

preprocessing and the current LMS, and the LMS W[n] is

initiated back to I.

The role of the preprocessing matrix is to speed-up the

convergence of the LMS crosstalk canceler W[n] between the

updates, i.e., n /∈ U and hence speed-up the convergence of

the overall system.

We study the convergence of the Deep-LMS algorithm

through the characterization of the minimal SINR at the input

and the output of the LMS crosstalk canceler between two

consecutive updates of the preprocessing matrix. The main

result of this paper (Theorem 1) states that if the update time

was properly chosen, the rate of the improvement in the SINR

at the output of the Deep-LMS will be higher after the update

of the preprocessing matrix.

Formally, let H̃[n] = WP[n]H[n] denote the effective

channel matrix for the LMS crosstalk canceler. The SINR at

the i-th input of the LMS crosstalk canceler, i.e., the SINR

that is measured in ui[n], see Fig. 1 is given by:

Φi[n] =
|h̃i,i[n]|2∑

j �=i

|h̃j,i[n]|2 + σ̃i[n]
, (14)

where σ̃i[n] is the variance of the i-th entry of the colored

noise ν̃[n] = WH
P [n]ν[n]. The minimal input SINR to the

LMS block is defined as Φ[n] = min
i

Φi[n].

In the following analysis, we focus on the set of times

between two updates of the preprocessing matrix, i.e., the set

of times F� � {n�, n� + 1, . . . , n�+1 − 1}, where n� ∈ U and

n�+1 = min
n∈U

{n > n�}, i.e., n�+1 is the first update of the

preprocessing matrix WP[n] after time n�. Note that WP[n]
and H̃[n] do not change during the analyzed interval, and

hence Φ[k] = Φ[m] for any k,m ∈ F�. Therefore, it will be

convenient to denote the minimal input SINR at these times

by Φ�. The same argument applies to the covariance matrix

R� = E{u[n]uH [n]}. Also note that at time n� ∈ U , the LMS

crosstalk canceler is initiated and therefore W[n�] = I. Hence,

at the update time instance, the input SINR to the LMS block

2The estimation of the direct channel is an essential part of the demodula-
tion process in DSL. For the analysis of the algorithm, we assumed that this
estimation is accurate.

is also the output SINR of the the Deep-LMS, i.e., the SINR

that is measured in xi[n].

Theorem 1. If μ = 1
3Tr(R�)

, the minimal SINR at time n�+1

is lower bounded by

Φ�+1 ≥
((

c · an�+1−n�Φ�

)−1
+ η∞

)−1

− 1, (15)

where c =

(
1 + δ (Φ)

)−1

, a =

(
1− β (Φ)

)−1

,

δ (Φ) = 1+2α(Φ)
Φ−α(Φ) , β (Φ) = 8

9g

(
1
N (1− α(Φ)+1

Φ+1 )

)
,

α(Φ) =
(
N − 1 +

√
N − 1

)√
Φ+2(N −1), g(x) = x− 1

2x
2

for complex LMS and g(x) = x− x2 for LMS over the reals
and η∞ is the maximal MSE of the optimal solution at steady
state.

Proof. As was mentioned above, the convergence rate of the

LMS depends on the correlation matrix of the input signal,

and more specifically, on the spread of the eigenvalues of this

matrix. The proof uses the knowledge of the minimal input

SINR to bound the spread of these eigenvalues. Then, we use

a novel bounding analysis that gives the desired bound on the

output SINR. However, due to space constraints, the proof is

omitted from this paper, and will be given in [20].

Note that η∞ approaches zero when the variance of the

noise approaches zero. This fact is highly relevant in DSL

systems, where the crosstalk interference is much stronger than

the background noise. Thus, η∞ is typically negligible and we

can write:

Φ�+1 � c · an�+1−n�Φ�. (16)

Furthermore, if Φ� > 1.5N2 + 3N , both c and a > 1 are

monotonically increasing functions of Φ�. Hence, updating the

preprocessing matrix WP at (sufficiently large) time n�+1,

i.e., when c ·an�+1−n� is large enough, will improve the input

SINR of the LMS component at times n > n�+1. Once the

preprocessing matrix is updated, the (new) minimal SINR at

the input of the LMS is improved accordingly, leading to an

increase in c and a, and hence to a faster convergence rate

of the LMS. Hence, each update of the preprocessing matrix

speeds up the convergence of the entire system.

V. NUMERICAL RESULTS

In this section we demonstrate the performance of the Deep-

LMS algorithm and compare it to the performance of the

conventional LMS. We also study the performance of the

accelerated versions where the LMS component is replaced

by its averaged version.

All channel matrices in this section were drawn randomly

according to the model in [21]. In particular, at each frequency

f in a cable of length �, the IL can be modeled as

|Hii(f, �)|2 = e−2α�
√
f (17)

and the FEXT can be modeled as

|Hij(f, �)|2 = |Hii(f, �)|2K(�)f2 i �= j, (18)
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Fig. 2: An illustration of the eigenvalues spread of the correlation
matrix of the received signal and the non-diagonal dominant structure
of the channel matrix at high frequencies.

where α = 3.72 · 10−6 and K(�) is a log-normal random

variable and we set � = 100m. The phase of all lines is

uniformly distributed over [0, 2π). We simulate a typical up-

stream scenario with a carrier spacing of W = 497.5KHz

a transmit PSD mask as in [22] and a colored background

noise of −140dBm/Hz below 30MHz and −150dBm/Hz above

30MHz [23].

An illustration of the eigenvalues spread of the received

signal correlation matrix is shown in Fig 2. The figure also

illustrates the non-diagonal dominant structure of the channel

matrix at high frequencies. The diagonal dominance is mea-

sured by the ratio between the diagonal term and the sum of the

absolute value of all non diagonal terms [24]. Most traditional

DSL algorithms require this ratio to be larger than 1. Thus

Fig. 2 demonstrates the need for novel vectoring algorithms

that can operate in the G.fast bandwidth.

Before we present the performance of the Deep-LMS al-

gorithm, we need to characterize the choice of update times.

Moreover, as an inherent part of the bit-loading component of

the DMT system in DSL systems, an estimation of the SINR at

the output of the crosstalk canceler is available to the modem.

Hence, the set of update times U can be easily determined in

real time using the measured SINR.

We update the preprocessing matrix of the Deep-LMS

whenever the SINR is improved by 5dB or when more than ñ
iterations have passed since the last non-SINR based update

of the preprocessing matrix.

Fig. 3 shows the average sum rate per user in each iteration

using the Deep-LMS and the traditional LMS. The sum rate

of each user was computed by:

Rt = W
K∑

k=1

[
log2 (1 + SINRi,k[n])

]
bmax

(19)

where SINRi,k[n] is the SINR at the output of each algorithm

at the i-th user at the k-th frequency, bmax = 12 is the maximal

number of bits per DMT frequency bin as defined in G.fast,

[2]) and [x]b = min{x, b}. As can be seen the Deep-LMS

algorithm converges much faster than the traditional LMS, for

example, it reaches 1.7Gbps in one third of the time.

Fig. 3 also depicts the performance of the accelerated LMS

that uses filter averaging of [19]. In this algorithm (marked

as AVG-LMS) the LMS component was updated as in the

n
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Fig. 3: Average sum rate comparison (G.fast frequency bins 17MHz-
200MHz).

n
0 200 400

m
in

iS
IN

R
i[d

B
]

-20

0

20

40

75MHz

n
0 500 1000

m
in

iS
IN

R
i[d

B
]

-20

0

20

125MHz

n
0 500 1000

m
in

iS
IN

R
i[d

B
]

-20

0

20

175MHz

Deep-LMS
LMS
AVG-LMS
non-normalized Deep-LMS
AVG Deep-LMS

Fig. 4: Minimal output SINR (over all users) comparison at certain
frequency bins.

conventional LMS (4) but the actual filter that was applied

to the data at each iteration n was an averaged weight matrix
n∑

i=0

θn−iW[i] with a forgetting factor of θ = 0.95. An analysis

of a stochastic approximation with such an averaging method

can be found for example in [25]. This averaging indeed

accelerate the convergence, but is still much slower than the

Deep-LMS, Furthermore, the same averaging technique can

also be applied to the Deep-LMS (marked as AVG Deep-

LMS), resulting in an even faster convergence.

To further simplify the algorithm, we also tested the per-

formance when D̃ is set to I in (13), i.e., when we violated

the assumption that the preprocessing matrix is normalized

such that the direct effective channel gain of all users is 1. As

can be seen, the loss due to this simplification is negligible.

Hence, we conjecture that this normalization is required mostly

for the analysis, but has no significant effect on the actual

performance.

To better illustrate the behavior of the different algorithms,

Fig. 4 shows the minimal SINR at the output of the adaptive

crosstalk canceler for each of the algorithms in specific fre-

quency bins. This figure gives a better understanding of the

nature of the proposed Deep-LMS algorithm. It shows that the
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Deep-LMS starts exactly the same as the traditional LMS. But,

when the traditional LMS manages to improve the SINR above

certain point, the Deep-LMS takes advantage of this improved

SINR to gain a significant increase in the convergence rate.

VI. CONCLUSIONS

In this paper we presented a new LMS-based crosstalk

canceler for the upstream transmission in G.fast systems. The

new crosstalk canceler preprocesses the received signal using

an adaptive matrix prior to a conventional LMS crosstalk

canceler. This preprocessing matrix is initiated by the identity

matrix and at any update of the preprocessing matrix it is

set into the product of the current LMS crosstalk canceler

and the current preprocessing matrix. The main goal of the

preprocessing matrix is to alter the effective channel matrix

into a diagonal dominant structure. We showed that the method

can be used to speed up the convergence of the entire system

given that the SINR is sufficiently high. Since, the prepro-

cessing matrix is not frequently updated, the complexity of

the algorithm is approximately twice the complexity of the

conventional LMS.
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