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ABSTRACT

Segmentation is one of the central problems in image analy-
sis, where the goal is to partition the image domain into re-
gions exhibiting some sort of homogeneity. Most often, the
partition is obtained by solving a combinatorial optimization
problem, which is, in general, NP-hard. In this paper, we
follow an alternative approach, using a Bayesian formulation
based on a set of hidden real-valued random fields, which con-
dition the partition. This formulation yields a continuous op-
timization problem, rather than a combinatorial one. In the
supervised case, this problem is convex, and we tackle it with
an instance of the alternating direction method of multipliers
(ADMM). In the unsupervised and semi-supervised cases, the
optimization problem is nonconvex, and we address it using
an expectation-maximization (EM) algorithm, where the M-
step is implemented via ADMM. The effectiveness and flexi-
bility of the proposed approach is illustrated with experiments
on simulated and real data.

Index Terms— Image segmentation, hidden fields, ex-
pectation maximization, alternating direction method of mul-
tipliers (ADMM).

1. INTRODUCTION

The goal of image segmentation is to partition an image into
regions that are “homogeneous”. Since the notion of homo-
geneity is highly problem-dependent, image segmentation is
a vast area of research, which has been the focus of a very
large amount of work by the computer vision and image anal-
ysis communities. Moreover, image segmentation is almost
invariably an ill-posed inverse problem, requiring some form
of regularization (prior knowledge, in Bayesian terms) to be
imposed on the solution, with the objective of promoting “de-
sirable” solutions. Naturally, the definition of desirable solu-
tions is highly problem-dependent. Image segmentation plays
a central role in many applications, such as, remote sens-
ing [1], computer vision [2], and medical imaging.

If approached with Bayesian tools, image segmentation
is often formulated as a maximum a posteriori (MAP) esti-
mate of the partition, i.e., that which maximizes the product
of the likelihood function (the probability of the observed im-
age given the partition) and the prior probability the partition,
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usually expressed via a Markov random field (MRF) [3]. In a
variational framework (e.g., active contours/snakes, geodesic
active contours, level sets [4,5]), images are segmented by
minimizing the sum of data misfit terms and regularization
terms. In graph-based methods [6], image segmentation is
formulated as a graph partition problem, where the regular-
ization is implicit in the definition of the partition.

A natural representation of a discrete image segmentation
is as an image of labels, each indicating to which segment the
corresponding pixel belongs. With this representation, MAP
and variational segmentation correspond to combinatorial op-
timization problems, which, apart from a few exceptions, are
NP-hard, thus impractical to solve exactly. In the last decade,
several powerful approximations have been introduced, such
as those based on graph cuts or convex relaxations of the orig-
inal combinatorial problems (see [5] for a comprehensive re-
view).

1.1. Contributions

In this paper, inspired by the “hidden Markov measure fields”
introduced by Marroquin et al [7], we sidestep the hurdles
raised by the combinatorial approach to image segmentation
by: (a) adopting a Bayesian framework, (b) introducing a set
of hidden real-valued fields, conditioning the probability of
the partitions, and (c) adopting a suitable prior for the hid-
den fields. Armed with this model, we compute the marginal
MAP (MMAP, by marginalizing with respect to the segmenta-
tion) estimate of the hidden fields. For the prior, we adopt vec-
torial total variation (VTV) [8], which promotes piece-wise
smooth vector fields, with coordinated preservation of discon-
tinuities. We consider supervised, unsupervised, and semi-
supervised scenarios. The supervised case leads to a convex
program, which we tackle using an instance of ADMM called
CSALSA [9]. In the un/semi-supervised cases, the resulting
problem is non-convex and we address it using EM. From the
MMAP estimate of the hidden fields, both soft or hard seg-
mentations may be trivially obtained.

1.2. Related work

The work in [10, 11] also approaches image segmentation us-
ing the hidden fields paradigm, but with a key difference with
respect to [7]. Whereas [7] uses hidden measure fields, i.e.,
each element is a probability distribution over segments, thus
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under non-negativity and sum-to-one constraints, [10,11] use
a collection of unconstrained real-valued fields, which ex-
press the local probability distribution of the segments via a
logistic link; the drawback is that, even in the supervised case,
the resulting optimization problem is non-convex.

A number of convex relaxations for the combinatorial op-
timization formulations have been introduced in recent years
(see [5] for a comprehensive review). In these relaxations, the
objective is to obtain solutions close to those of the original
discrete optimization. As seen later, this contrasts with our
approach, where the objective is to compute probabilities of
the partitions, expressed in the hidden field. This opens the
door to statistical inference, e.g., of the model parameters in
the unsupervised scenario, which are not directly accessible
in the above relaxations.

1.3. Paper Organization

Section 2 presents the proposed formulation and inference
criterion. Sections 3 and 4 present the algorithms proposed
for the supervised and un/semi-supervised cases, respectively.
Section 5 reports experimental results, and Section 6 presents
concluding remarks and pointers to future work.

2. PROBLEM FORMULATION

Let S = {1,--- ,n} index the n pixels of an image and x =
[X1, -+ ,X,] € R¥" be a d x n matrix of d-dimensional
feature vectors. Given x, image segmentation aims at finding
a partition P = {Rj,..., Rk} of S such that the feature
vectors with indices in a given set R;, fori = 1,..., K, are
similar in some sense. A partition P is equivalent to an image
of labels y = (y1,--- ,yn) € L™, where £ = {1,...,K},
such that y; = k if and only if i € Ry,.

2.1. MAP Segmentation
The MAP segmentation is given by

Yuap € arg max (log p(xly) +logp(y)), (1)

where p(x|y) is the observation model (i.e., probability of
observing the collection of features x, given segmentation y)
and p(y) is the prior probability of segmentation y. A com-
mon assumption is that of conditional independence [3], i.e.,

K
le Hp Xz|yl H H pk(xi)7 (2)

€S k=11i€Ry

assuming (as is also common) that the probability function
of a feature vector depends only on the segment to which it
belongs: pir(x;) = p(x;ly; = k). For now, consider the
supervised scenario: the class-conditional probability func-
tions pj, are known (maybe previously learned from a training
set). Later, we discuss the unsupervised and semi-supervised
cases, where these functions depend on unknown parameters
to be learned from the image being segmented.
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Various forms of MRF have been used as prior p(y). A
paradigmatic example is the multilevel logistic (MLL) [3],
which promotes coherent segmentations, i.e., such that neigh-
boring labels are more probably of the same class than not.

The MAP criterion in (1) is a combinatorial optimization
problem. For MLL priors and K = 2, the problem can be
mapped into that of computing a minimum cut (min-cut) on a
suitable graph [12], for which efficient algorithms exist. How-
ever, for K > 2, the problem is NP-hard, thus intractable
to solve exactly. In the past decade, several algorithms have
been proposed to approximate yyap, of which we highlight
the graph-cut-based a-expansion, sequential tree-reweighted
message passing (TRW-S), loopy belief propagation (LBP),
and various convex relaxations; see [13], for a comprehensive
review and comparison of these methods.

2.2. Hidden Fields and MMAP Segmentation

MAP image segmentation in terms of class labels y raises
difficulties, namely: the computational complexity resulting
from the combinatorial nature of the problem; learning un-
known model parameters (both of the prior and of the obser-
vation model). These difficulties have stimulated research in
several fronts.

An alternative approach, pioneered in [7,10], reformulates
the original segmentation problem by introducing a hidden
field z of continuous variables, conditioning y. The marginal
MAP (MMAP) estimate of z is then computed, which corre-
sponds to a soft segmentation. This approach avoids combi-
natorial optimization, replacing it with an unconstrained con-
tinuous problem [10, 11], or a constrained convex one (thus
efficiently solvable [14]).

Let z = [z1,...,2,] € REX" denote a matrix of (hid-
den) random vectors, such that each label y; depends on the
corresponding z; (in a conditional independent way),

p(ylz) = [] p(y:lz)- (3)
i€S
Combining (3) with the conditional independence assumption
in (2), allows writing
p(x|z) = [ p(xilz:), )
i€S

where each p(x;|z;) is obtained by marginalizing p(x;, y;|2z;) =

p(%:|y:) p(yi|zi), with respect to the segment label y;:

p(xilzi) = Y p(xily:) p(yilz:)- Q)

yi €L
Finally, the MMAP estimate of the hidden field z is given by

+ ) log p(xi|z; >) (6)

ZMMAP € arg max (logp
zeRK
€S

from which the soft segmentation p(y|zymap) may be ob-
tained. Hard segmentation may be done (pixel-wise) via

Ui € arg max p(yil(Zvmap)i)
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where (a); denotes the i-th component of vector a.

2.3. Link Between Hidden Field and Labels

The conditional probabilities p(y;|z;) play a central role in
hidden field approaches. As in [7], we adopt the simple model

p(yi = klz;) = (z;),, i€S, keL 7)

Given that each z; is a probability distribution, it satisfies the
non-negativity constraint (z; ) . >0, for k € £, and the sum-

to-one constraint 17z; = 1, where 1 denotes generically a
column vector of ones with appropriate dimension.

Inserting (7) into (5) allows writing p(x;|z;) = p!zi,
where p; = [p(xily; = 1),...,p(xily; = K)|T. Finally,
denoting ¢(z) = —logp(z), MMAP estimation of z corre-
sponds to solving the problem

,uin, -2 _log(p{z) ®)
€S
subject to: z > 0, 17z =17,

which is convex, if ¢ is convex.

2.4. The Prior

An important aspect of hidden field approaches is that they al-
low using state-of-the-art priors/regularizers for images, such
as those based on wavelet frames [10]. In this paper, we use a
form of vector total variation (VTV) [8] defined as

2) =AY /| 0w 2|

i€S

+][(Dy 2P +CC 9

where A\ > 0 is a regularization parameter, || - || is the Eu-
clidean norm, and Dy, D,, : RE*" — REX" are operators
computing horizontal and vertical first order backward differ-
ences, respectively. i.e.,

(Dr2z)i =2 — zngy, (Do2)i = 2i — Zy(i)s

where h(i) and v(i) denote, respectively, the horizontal and
vertical backward neighbors of pixel 7, on the image lattice,
assuming cyclic boundaries. We also define D as the linear
operator such that (Dz); = [(Dy, z);, (D, 2)]”.

VTV regularization has a number of desirable properties:
as standard TV, it promotes piecewise smoothness, but pre-
serves strong discontinuities; the coupling among the field
components in (9) tends to align the discontinuities among
these components [8]; finally, it is convex and amenable to
optimization via proximal methods [15].

3. SUPERVISED SEGMENTATION

The optimization (8) was addressed in [14] by converting it
into the equivalent unconstrained form

: H;: RS R
A, 2 oW 5 e g 00
j:
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where the g; are closed, proper, and convex functions, and the
H; are linear operators, given by

91(5) Z?ES log (pl £1)+ H, =1 n1 = Kn
92(&) = — > ics &l Hy; =D ny=2Kn
g3(&) = Kxn( ) H;=1 n3=Kn
94(§) = L{1}(1T€) H,=1 ny=Kn.

Above, (a); = max{a,0} and 14(x) = 0, if x € A, and
ta(x) = oo, otherwise. Next, we write (10) in constrained

form (with u; € R and u = [u],ul, ul ul]” € R5%™),
4
min H(wy subjectto: u = Gz
u,z Zlgj( J)a ]
=

where G = [HT ,HI HI HI]T. We then apply the con-
straint split augmented Lagrangian shrinkage algorithm
(CSALSA) [9], which is an instance of ADMM [16]. The
pseudocode for the resulting algorithm, termed SegSALSA,
is shown below.

Algorithm SegSALSA

1. Sett=0, choose,u>0, u? = (u?,ud, z3,22)

2. Setd® = (d?,d$,d$,d9)

3. repeat

4. z' <—argmin||Gz—ut —dt”i

5. (* update u *)

6. fori =1to4

7. dov; «+ Hz!t! — d!

8. (* apply Moreau proximity operators *)
t+1 K

9. <—argm1n gi(u;) + §Hui—1/,-||F

10. (x update Lagrange multipliers d *)

11. dit! « utJrl —v;

12. t—t+1

13. until stopping criterion is satisfied.

Given that the functions g; are closed, proper, and con-
vex, G has full column rank, and SegSALSA is an instance
of ADMM, then the sequence zt, fort =0,1,... converges
to a solution of (8) if © > 0. A few comments about the main
steps of SegSALSA are in order: the quadratic problem in
line 4 can be solved efficiently in the frequency domain, us-
ing the FFT, with complexity O(Knlogn) [9]; the Moureau
proximity operators (MPO) in line 9 are pixelwise decoupled
and have complexity O(n) (see [14] for details on these par-
ticular MPOs). The stopping criterion is based in the primal
and dual residuals [16]. In all examples shown in Section 5,
we use 4 = 1 and SegSALSA converges in less than 200
iterations.

4. UNSUPERVISED AND SEMI-SUPERVISED
SEGMENTATION

In Section 3, we assumed that all the class-conditional proba-
bility functions p(x;|y; = k) are known. In unsupervised or
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semi-supervised scenarios, this is not the case and those func-
tions include unknown parameter(s) 6, to be learned from x,
i.e., we write pi(x;) = p(x;|0;). We begin by extending
to the unsupervised case the approach proposed in Section 3,
by computing the joint MMAP estimate of the couple (z, ),

where 0 = (0, ... OK) which is a solution of
maéX p(z H Z py, (xi|6y,) p(yilz:),
€Sy, eL
subjectto: z >0, 1Tz=17,

where p(0) is a prior on 6. This problem could be tackled via
alternating optimization w.r.t. z and 6. The optimization with
respect to z is as in (8), thus may solved using SegSALSA.
However, the optimization w.r.t. @ may be rather involved.

To circumvent the above difficulties, and as in [10,11], we
propose an EM algorithm, by treating x as observed data, y
is the missing/latent data, and the pair (z, ) are the optimiza-
tion variables. At the ¢-th iteration, the E-step and M-step of
the EM algorithm are as follows:

E-step:  Q(z,0;2',0") = Ey [logp(x,y,z,0)|x,2",6'],

M-step:  (z+1,0') € arg max Q(z,0:2z',6").

Given that the complete likelihood has the form

p(x,y,z,0) = prb (xi160y,) p(yi|zi)
€S
and that the link p(y;|z;) is given by (7), and after simple but
lengthy manipulation, we obtain
Q(z,6;2',0') = Q(6;2",6") + Q(z;2',0"),
where
Q(6:2",6") =logp(6) + > > wf log pi(xi[6%)
€S kel
Q(z;z",0") = log p(z —l—Zszklog Zi)y, ),
i€S kel
and
pi(xil6%) p(yi = K|z}
Wl = plys = hixi, 2, 01) — el Py = Hm)
2= Pi(xi|60) plyi = 1]27)
The function Q(z,0;z',0") is decoupled w.r.t. z and 0,
and the term Q(0;z",0") is decoupled w.r.t. 01,...,0k, if

In p(0) is also similarly decoupled. The structure of the pro-
posed EM algorithm for unsupervised segmentation, termed
U-SegSALSA, is shown below.

Algorithm U-SegSALSA

1. Sett =0, choose z’, 8°

2. repeat

3 (x E-step *)

4. w;k — ply; = klx;, 28,0, i=1,..,n, k=1,.., K
5. 0" < argmaxe Q(6;z",0") (* M-step w.r.t. @ %)
6 z' ¢« arg max, Q(z; 2", 0") (* M step w.r.t. z *)
7 t—t+1

8.  until stopping criterion is satisfied.
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Fig. 1.

Top left:
N (k,0.8), for k € {1,2,3,4}). Top right: supervised seg-
mentation by SegSALSA. Bottom left: semi-supervised seg-
mentation (10 labeled samples per class). Bottom right: evo-
lution of the log-likelihood.

observed image of features (pg(x;) =

Notice that Q(z; z*, 8") is convex w.r.t. z and that the op-
timization in line 6 of U-SegSALSA is similar to (8). The
only difference is that instead of — log(p? z;), we now have
—(w})T log(z;), where w! = [w!,... ,w! ;]". The corre-
sponding MPO (which is required to use SeéSALSA to solve
line 6 of U-SegSALSA) is

v+ /Vi+dw/p

2 )

argmin 5 v — €] — w” log((€)) =

component-wise, thus with O(Kn) cost.

Finally, in the semi-supervised case, we have access to the
class/segment labels of some of the image locations. The only
difference W r.t. the fully unsupervised case just described is
that the w!  Variables corresponding to the labeled samples
are kept frozen at the given labels.

5. EXPERIMENTAL RESULTS

The effectiveness of the proposed algorithms is now illus-
trated on simulated and real data. Fig. 1, top left, shows
a simulated 256 x 256 image of real-valued (d = 1) fea-
tures: pg(z;) = N(k,0.8), for k € {1,2,3,4}. The label
image y is a sample of a first-order MLL-MRF with param-
eter 1.5. The significant overlap of the four class-conditional
densities suggests a difficult segmentation problem, which is
confirmed by the overall accuracy (OA) of the maximum like-
lihood (ML) segmentation, which is 0.66. Fig. 1, top right,
shows the SegSALSA segmentation, which has OA = 0.998,

20
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Fig. 2. Left: 256 x 256 RGB image. Right: U-SegSALSA
background/foreground segmentation.

corresponding to an almost perfect segmentation. The semi-
supervised segmentation obtained with only 10 labeled sam-
ples per class is shown in Fig.1, bottom left. Since the op-
timization problem is nonconvex, we run the EM algorithm
10 times with independent noise samples and initialization
of the class means set to the respective sample mean and
unit variance, and hidden vectors z; uniformly distributed.
The semi-supervised algorithm achieved mean OA equal to
0.987 (£0.0015). We highlight that the supervised and semi-
supervised algorithms produced identical segmentations and
that the semi-supervised version converges in less than 20 it-
erations (roughly 40 seconds, on a standard PC running MAT-
LAB). In both algorithms the regularization parameter was set
to A = 1.4; values between 1 and 2 yield very similar results.

Fig. 2 shows a 256 x 256 RGB image of two horses on
a grass background and its semi-supervised segmentation,
using two Gaussian class densities and 4 labeled samples
per class. The two Gaussians are initialized with the sam-
ple means of the labeled samples and identity covariances,
while the hidden vectors are initialized with uniform distribu-
tions. The segmentation is qualitatively very good, with the
two horses accurately separated from the background. The
computation time was about 40 seconds.

6. CONCLUDING REMARKS

This paper avoids the integer optimization problems that usu-
ally appear in image segmentation, by resorting to the hidden
field approach pioneered by [7]. We revisited the SegSALSA
algorithm introduced in [14] for supervised scenarios and ex-
tended it to unsupervised and semi-supervised scenarios. The
proposed method is an EM algorithm, where the E-step is
similar to that of a finite mixture, and the M-step is similar
to SegSALSA. The effectiveness of the proposed method was
illustrated with simulated and real images.
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