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Abstract—The aim of this paper is to investigate the accuracy
of the estimates learned with an open loop model of a building
whereas the data is actually collected in closed loop, which
corresponds to the true exploitation of buildings. We propose a
simple model based on an equivalent RC network whose param-
eters are physically interpretable. We also describe the maximum
likelihood estimation of these parameters by the EM algorithm,
and derive their statistical properties. The numerical experiments
clearly show the potential of the method, in terms of accuracy and
robustness. We emphasize the fact that the estimations are linked
to the generating process for the observations, which includes
the command system. For instance, the features of the building
are correctly estimated if there is a significant gap between the
heating and cooling setpoint.

I. INTRODUCTION

Buildings and their thermal behaviour are one of the ma-
jor leverages in designing fighting strategies against climate
change. Indeed, according to the European Commission, build-
ings are responsible for 40% of the energy consumption and
36% of the CO2 emissions in the European Union. Most of
these emissions are due to heating, for instance 77% of them in
France in 2013 [1]. One obvious aim is naturally to reduce the
consumptions of the building sector. Beyond this, the role of
the buildings in the new energy policies is two-fold, because
they could be key interactive actors in the flexibility of the
emerging smart grids, helping to integrate renewables and to
strike a supply-demand balance.

Several tools and ideas exist in order to adress these new
challenges: load prediction, estimation of load shift potentials,
ultimately optimal control, etc. They have in common the need
for a good model of the building, able to reproduce its thermal
behaviour. This article is concerned with the identification
procedure of such models.

Before identification, a class of models ought to be chosen.
We focus here on grey-box modeling, because it has both
the advantage of cheap computational cost and nice physical
interpretation [2]. Many articles ([2], [3], [4]) highlight the fact
that low-order models, are sufficient to accurately describe the
dynamics. Authors typically agree on the order 2.

However, it is not clear whether the model should be
identified in open loop, or within a control loop, the latter
case corresponding to the real exploitation of buildings. On
one hand, this discussion is often overlooked in the articles
developing open loop approaches ([4], [5], [6]). They evaluate

their method by comparison to higher-order white-box models
or looking at the accuracy of the estimates, but no conclusion
can be drawn relatively to their behaviour within a closed-
loop system. On the other hand, [7] suggested a closed
loop identification, which is designed to apply without the
measurement of the indoor temperature and gives promising
results. Still, this approach lacks of accuracy when taking into
account the saturation of the controller. [2] also identifies a
closed loop model, but the controller is strongly simplified
regarding the small time step.

With these elements in mind, the purpose of the article is
to identify an open-loop grey-box model, from which physical
inference can be drawn, and study its performances when the
data are in fact generated in closed loop. Our object is not to
work on defining the best representation of a building. Instead,
we consider a given model, namely a R3C2 network, and
show how to estimate its parameters and their uncertainties.
The method is easily adaptable to refinements of R3C2. We
use simulated data that reproduce the real exploitation of a
building and illustrate that even in these poor conditions (less
informative than open loop), we are able to estimate static and
dynamic physical parameters of the buildings with only a few
weeks of measured data.

This article is organized as follows. In Section II, we define
our model, putting emphasis on the physical interpretation of
its parameters. We describe also how to derive the discrete-
time linear gaussian state-space representation. Next, in Sec-
tion III, we introduce the estimation procedure grounded in the
EM algorithm, and mention some useful statistical results that
enable us to gauge the standard errors. Moreover practicalities
are not left behind, and we detail the full estimation protocol.
Finally, Section IV focuses on the numerical experiments
conducted on simulated data. We mainly investigate whether
or not inference can be drawn from an open loop building
model learned from data actually generated in closed-loop.
The performance of the procedure is assessed in terms of
accuracy of the estimated physical parameters, robustness to
noise corruption and informative content of the data.

II. DYNAMIC MODEL

A. RC network

Based upon the analogy between thermal and electrical
quantities, buildings as electrical networks are known to be
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Table I
INPUTS AND OUTPUT OF THE R3C2 REPRESENTATION.

Inputs Output

outdoor temperature

indoor temperatureheating flux
internal gains

solar gains

both lightly parametrized and able to reproduce complex
dynamics [2].

We consider accordingly a building modeled as a R3C2
network, depicted in Fig. 1. It has five parameters, the two
capacitors Cs and Cr which account respectively for the
slow and fast dynamics of the building and the three thermal
resistors Rf , Ri and Ro. The building is seen as a unique
thermal zone, at temperature Ti. The outdoor temperature is
denoted To. A third node Ts is representative of the tempera-
ture inside the envelope of the building. During the winter,
the main contribution of the solar gains are the radiations
transmitted through the windows: this is the quantity Qs. The
effect of Qs on the indoor temperature is mediated through the
envelope with Ts. Finally, Qr is the sum of two contributions:
the heating flux Qh and the internal gains Qi, due to the
occupancy of the building. The inputs and output of the model
are summarized in Table I.

Qr Cr

Ti Ri

Qs Cs

Ts Ro
To

Rf

Figure 1. Building model: a R3C2 equivalent network.

In the field of thermal science, the overall heat transfer
coefficient UA quantifies the heat loss in a building. However,
it is a tedious task to compute it, since it requires the
comprehensive knowledge of the geometry of the building,
all its materials, etc. One of the benefits of RC networks is
that they provide a simple formula for UA in the form of the
total conductance of the network, namely

UA :=
1

Rf
+

1

Ri +Ro
. (1)

Let us briefly explain the reasoning leading to this formula.
Suppose that the system is in the steady-state. Using the
representation (3) (introduced later on) at equilibrium, we get

Qr = UA(Ti − Tx)−
Ro

Ro +Ri
Qs, (2)

where UA is defined as in (1). This indeed corresponds to
the definition of UA as the static coefficient for the amount
of losses through the envelope of the building per unit of the

temperature difference Ti−Tx. Likewise, (2) shows that, under
the RC network model, g := Ro

Ro+Ri
defines the solar energy

transmittance. Additionally, two time constants τ1 and τ2 can
be computed, they characterize the dynamic behaviour of the
building. These four parameters provide thus a useful physical
interpretation of the network in terms of thermal characteristics
of the building.

B. State-space representation

1) Continuous time representation: To derive a state-space
representation suitable for the learning process, we write first
the Kirchhoff’s current law at Ti and To:{

Qr = Cr
dTi

dt + 1
Ri

(Ti − Ts) + 1
Rf

(Ti − To)
Qs = Cs

dTs

dt + 1
Ri

(Ts − Ti) + 1
Ro

(Ts − To)
. (3)

In this article, we consider that both the indoor temperature
and the inputs U :=

(
To Qr Qs

)ᵀ
are indeed measured.

The state of the system are then X =
(
Ti Ts

)ᵀ
and (3) can

be written as a linear continuous time state-space equation:

dXt

dt
= A(θ)XtB(θ)Ut + Vt, (4)

Yt = CXt +Wt, (5)

where Vt is a model noise and Yt is a noisy observation of
the ”true” indoor temperature Ti = CXt. Vt and Wt are
independant white gaussian processes of covariances Q and
R. The state matrices are

A =

[
−zr(zf + zi) zrzi

zszi −zs(zo + zi)

]
B =

[
zrzf zr 0
zszo 0 zs

]
C =

[
1 0

]
, (6)

with zr := 1/Cr, zs := 1/Cs, zf := 1/Rf , zo :=
1/Ro, zi := 1/Ri. Finally, the parameter vector is θ :=(
zr zs zf zo zi

)ᵀ
.

2) Discretization: Applying the constant variation method
and the theory of stochastic differential equations (see e.g. [8]),
it is standard to discretize the state equation (4) and obtain for
a time step δ and at time k = kδ:

Xk = Aδ(θ)Xk−1 +Bδ(θ)Uk + Vk, (7)

with Vk ∼ N (0, Qδ), Qδ =
∫ δ
0
esAQesA

ᵀ
ds, Aδ = eδA, Bδ =

A−1(eδA − I)B. [9] gives an exact computation of Qδ .
The observation equation (5) is straightforward to discretize

In particular, the C matrix remains unchanged. The final model
is thus a discrete time-invariant linear gaussian state-space
model (LGSSM), in open loop, with five parameters.

III. PARAMETER IDENTIFICATION

A. The Expectation-Maximization (EM) algorithm

We choose the Expectation-Maximization (EM) algorithm
(spread by the seminal paper [10]) to estimate the parameters
θ of the model, under the assumption that the initial state is
normal. In our study case, we are not interested in estimating
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Algorithm 1 EM for LGSSM
0. Initialize θ = θ0 and set k = 1.
1. E-step: compute

Q(θ, θk) := Eθk [lnLθ(X,Y )|Y = y1, . . . , yn] . (8)

2. M-step: compute θk+1 :

θk+1 = argmax
θ
Q(θ, θk). (9)

3. If convergence is reached, terminate, otherwise set k ←
k + 1 and return to step 2.

the initial state, nor the noise covariances. We merely focus
on the estimation of the inverse of the resistors and capacitors.
EM is a standard maximum-likelihood approach for estimation
in LGSSMs, as described in [11]. To find an estimate θ̂ of θ,
it iterates two steps, sketched in Algorithm 1.

Firstly, the Expectation step calculates lnLθ(X,Y ) the log-
likelihood of the complete data problem, adding the state to
the observations. The states X being actually hidden, the true
log-likelihood lnLθ(Y ) is approached under the hypothesis
θk by Q(θ, θk) given in (8). This expectation is computed
with a Kalman smoother applied to the model parametrized by
θk. It can be shown, for instance in [12], that if we increase
the Q quantity, then the likelihood increases too: Q(θ, θk) ≥
Q(θk, θk) ⇒ Lθ(y1:n) ≥ Lθk(y1:n) (where we have used the
generic notation y1:n := {y1, . . . , yn}). Though it does not
prove the convergence of the algorithm, it indicates that at
least EM guarantees a non-decreasing likelihood at each step.

Secondly, a closed-form solution to the Maximization step
can be derived when no constrain applies to the structure
of the state matrices [12]. Yet, our matrices A and B are
structurally defined by θ =

(
zr zs zf zo zi

)ᵀ
, as can be

seen from (6). Thus, we use the Matlab routine fminunc with
the trust-region algorithm, which requires the computation of
∇θQ(θ, θk). We also choose to express the parameters θ as
θ = exp(η) and optimize with respect to η. This is a simple
way to make sure that estimated resistors and capacitors are
positive and keep the problem unconstrained.

Finally, EM terminates either when a maximum number of
iterations (here, 100) is reached or when a stopping criterion is
satisfied. We decide that the normalized slope of the likelihood
function being under a specified threshold is this criterion.

B. Accuracy

1) Central Limit Theorem: Few of the contributions to
building identification ([6]) deal with the evaluation of the
uncertainty of the identified parameters. In order to provide
confidence intervals, one can use the central limit theorem
(CLT). In the general case of a maximum likelihood estimator
θ̂n of θ and under some regularity conditions (see [13]), the
asymptotic distribution is given by

√
n(θ̂n − θ) −→

n→∞
N (0, I(θ)−1), (10)

where the Fisher information matrix I(θ) is defined by

I(θ) = lim
n→∞

1

n
Eθ
[
−∇2

θ lnLθ(y1:n)
]
. (11)

This theorem may be used for our application provided that
the data are generated in open loop, but not in closed loop.
The numerical experiments in Section IV attest nevertheless
that it is still a reasonable approximation in the latter case.

2) Computation of the Fisher information matrix: Using
Fisher’s identity [14]:

sθ(y1:n) := ∇θ lnLθ(y1:n)
= Eθ [∇θ lnLθ(X1:n, Y1:n)|Y = y1:n] , (12)

we see that the score is a by-product of the EM algorithm.
Following [15], the information matrix can then be obtained
by plugging in the score (12) into the approximation

Î(θ̂) :=
n∑
k=1

[
sk,θ̂(y1:k)sk,θ̂(y1:k)

]ᵀ
− 1

n
sθ̂(y1:n)sθ̂(y1:n)

ᵀ

(13)

of I(θ), with sk,θ(y1:k) := sθ(y1:k)− sθ(y1:k−1).
3) δ-method: Note that the parameters of interest for the

application we have in view are h(θ) =
(
UA g τ1 τ2

)ᵀ
rather than θ itself. The δ-method [13] is a standard tool which
only requires the computation of ∇θh(θ) to propagate the
uncertainty from θ to h(θ).

C. Procedure

1) Initialization: To avoid convergence of the EM algo-
rithm towards a local minimum, M > 0 random initializations
are drawn. We obtain M estimators, and select the one with
the greatest log-likelihood.

2) Numerical conditioning: [4] emphasizes the impact of
numerical conditioning on the estimation procedure. Here
we require the state matrix A defined by (6) to be well-
conditioned, since its inverse appears both in the descretization
and for the resolution of the M-step.

Proposition 1. Let ε := zs/zr. Assuming the three resistors,
or equivalently the three conductances, to be of similar mag-
nitudes, then the conditioning number in norm 2 of the matrix
A in (6) is ρ(ε) = O(ε−2). If we denote α = zf/zi and
β = zo/zi, we have more precisely

ρ(ε) ∼
ε→0

κ(α, β)

ε2
, (14)

with κ(α, β) =
(

1+(1+α)2

(1+α)(1+β)−1

)2
.

Proof. The result follows from straightforward calculations
omitted here for sake of brevity.

For any building, the inertia of the structure is (much)
greater than that of the air. Hence, it is reasonable to expect
Cr < Cs or even Cr � Cs. With Proposition 1, this means
that the problem is ill-conditioned. To adress this issue, [4]
uses time-scaled identification on an ARX model. It would be
convenient to adapt their method to state-space representation,
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but here we simply compute the conditioning number at each
iteration: above a certain threshold, we stop the iterations and
reinitialize to a random θ0 at step 0. in Algorithm 1.

3) Stability of the filters: We also test that the Kalman filter
is stable, which is needed for the asymptotic study of the
estimates. If the eigenvalues Aδ are outside the unit circle, we
reinitialize the procedure. We will describe the computational
burden of the overall procedure in the next section.

IV. NUMERICAL EXPERIMENTS

A. Learning data set

We consider an office building. Our data set is a mixture of
measured and simulated data: the internal gains, the outdoor
temperature and solar radiations were recorded during 27 days
at time-step 10 minutes. The generating process of the heating
load and simulate the internal temperature consists in selecting
the true values of the five parameters of the model and then

1) either choosing the heating sequence and simulate the
discrete LGSSM described in Section 2;

2) or adding a control loop to the building model, and
simulate a closed-loop model from the definition of a
temperature setpoint sequence.

Note that in both cases, we do identify an open-loop building
model. We focused on the second option, because although
having the control over the heating sequence enables us to
choose a very informative signal, the other method corresponds
in contrast to the real exploitation of a building. The controller
is a Proportional-Integral one, coupled with a non-linear
saturation function and an anti-windup strategy (see [7]), such
that the heating power is always positive and bounded. The
setpoint temperature has only two levels, alternating between
a heating (week days, always equal to 21 ◦C) and a cooling
(nights and week-ends) setpoint.

In the sequel, the base scenario is when the data are
generated in closed loop, with a cooling setpoint of 16 ◦C.
M = 50 initializations are performed, uniformly in [0, 1] for
every parameter (all true values are smaller than 1), except for
zs which is drawn between 0 and zr.

It took 56 minutes to run 10 simulations of this base scenario
on a laptop with a IntelCore i7 - 2.80 GHz processor. Most of
this time was attributable to the reinitializations, the Kalman
smoother and the optimization routine. There are however
much less reinitializations as the data length increases.

B. Results

We performed several numerical experiments, in order to
illustrate three points: the accuracy of the algorithm, the
robustness to noisy data, and the importance of the inputs of
the systems.

1) Accuracy of the estimates: An example of point and
standard error estimates is given in Tables II. Given the relative
small amount of data (14 days), we see that the EM algorithm
can perform well on estimating all four physical parameters.
UA and g are accurately estimated, whereas the time constants
are harder to retrieve, but their order of magnitude is good
enough from a thermicist point of view. Table III shows that

Table II
ESTIMATED PARAMETERS OF THE R3C2 NETWORK, FROM THE BEST

ESTIMATOR AMONG M = 50 INITIALIZATIONS. THE DATA ARE
GENERATED IN CLOSED LOOP, FOR 14 DAYS AT TIME STEP 10 MINUTES.

Parameter True value Estimation (± 2SE) Error (%)

zr 0.1 0.090 (±0.001) 10
zs 0.01 0.0070 (±0.0023) 30
zf 0.2 0.207 (±0.006) 3.5
zo 0.4 0.430 (±0.080) 7.5
zi 0.25 0.221 (±0.012) 11.6

UA 0.354 0.352 (±0.009) 0.6
g 0,385 0.346 (±0.040) 10.1
τ1 33.7 49.9 (±6.0) 48.1
τ2 3.6 4.2 (±0.2) 16.7

Table III
ESTIMATED STANDARD ERRORS OF THE PARAMETERS, COMPARED TO A
MONTE-CARLO PROCEDURE ON N = 100 DATA SETS. THE DATA ARE

GENERATED IN CLOSED LOOP, FOR 14 DAYS AT TIME STEP 10 MINUTES.

Parameter CLT Monte-Carlo

zr 0.0004 0.0013
zs 0.0012 0.0015
zf 0.0030 0.0073
zo 0.040 0.0871
zi 0.0058 0.0084

UA 0.0046 0.0059
g 0.0201 0.0496
τ1 2.98 19.21
τ2 0.1106 0.127

compared to a Monte-Carlo procedure on 100 experiments,
using the CLT gives similar but narrower intervals. It seems
therefore legitimate to make the approximation of using the
CLT even for closed-loop generated data.

In order to illustrate the peformances of our approach, we
also implemented a standard algorithm of the litterature. A
widespread approach consists for instance in identifying an
open-loop Multi-Input Single-Output (MISO) discrete transfer
function by means of the least squares algorithm, as in [5].
The transfer function takes the form

H(z−1) =


b11z

−1+b12z
−2

1+a1z−1+a2z−2

b21z
−1+b22z

−2

1+a1z−1+a2z−2

b31z
−1+b32z

−2

1+a1z−1+a2z−2

 . (15)

In such case, the physical parameter UA and the time constants
can be defined from the coefficients a1, . . . , b32. Indeed, the
two time constants of the system are classically obtained from
the poles of the transfer function, whereas the parameter UA
is the inverse of the static gain with respect to the input Qr
evaluated in 1. Confidence intervals can also be constructed
for the identified parameters of the transfer function (see e.g.
[16]) The δ−method is used to derive the confidence intervals
for UA, τ1 and τ2 from those of a1, . . . , b32. The different
approaches shall therefore be compared through the accuracy
of the estimated physical parameters.

We performed the identification with this approach on the
same data set generated in closed loop. The point estimates
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Table IV
ESTIMATED PARAMETERS (± 2 SE) AND THEIR CORRESPONDING

ABSOLUTE ERRORS FOR THE EM AND THE LEAST SQUARES ALGORITHMS.
THE DATA ARE GENERATED IN CLOSED LOOP, FOR 14 DAYS AT TIME STEP

10 MINUTES.

Parameter EM Transfer function

UA
0.352±0.009 0.318±0.005

(0.6%) (10%)

τ1
49.9±6.0 6.2±13.0
(48.1%) (82%)

τ2
4.2±0.2 0.18±0.04
(16.7%) (95%)

and twice their estimated standard errors are given in Table
IV, together with the estimation errors. It turns out that this
simpler approach gives good results regarding the accuracy
of the static parameter UA. However, it fails to reproduce the
dynamic behaviour of the system, the two time constants being
largely underestimated.

A second algorithm is the closed loop identification from
the load curve developped in [7]. This algorithm aims at
identifying the building parameters in the closed-loop case It
combines Kalman filtering and Gibbs sampling in a Bayesian
setting. We refer to [7] for a thorough description. The building
is represented by a R3C2 network, but the algorithm requires
additionally to model the control loop. We have chosen a
simple PI controller, in order to keep the model linear, as
in [7]. On the other hand, it is not necessary to measure to
indoor temperature, the observation being the load curve.

The numerical simulations are carried out on the same
dataset, with the same initialization procedure for the prior
distribution of the parameters. There were 5,000 iterations of
the Gibbs sampling, and the estimates are the averages over
the last 500 iterations. Whenever the indoor temperature data
is not used, as in [7], the algorithm typically overestimates
the slow time constant (τ1 ∼ 70h), whereas the other physical
parameters are of correct magnitude (UA ∼ 0.3, τ2 ∼ 4).

This second comparison suggests thus that it is preferable to
avoid modelling linearly the control loop, and either modelling
the saturation function or working in the open-loop case
instead.

2) Robustness to noisy data: In order to evaluate the
robustness of the algorithm to noise corruption of the model
and observations, we simulated the indoor temperature from
the identified model, in closed loop. It is compared to the
true indoor temperature, simulated from the true model with
the same setpoint but without model nor observational noise.
The simulation error is displayed in Fig. 2. It is of similar
magnitude that the good models identified in [4], even if we
have used much less data (2 weeks at rate 10 minutes vs 1
year at rate 1 hour), which suggests that our method is also
robust to noise corruption.

3) Role of the inputs: It is well-known that a necessary
condition for the identification to be efficient is that the inputs
of the system comprise as much information as possible. In
this view, we explored the influence of the data length and of
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Figure 2. Simulation error for the model estimated with noisy data but
simulated in closed loop with the noise-free inputs. The setpoint alternates
between 15 ◦C and 21 ◦C every 4h.
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Figure 3. Boxplots of the N = 1000 estimations of UA (top left corner),
the fast time constant (top right corner) and the slow time constant (bottom
line), against the number of days in the learning data set at sample rate 10
minutes. The true values are the horizontal dashed lines.

the gap between the cooling and heating setpoint. The intuition
behind the latter point is that under nonlinear control, the
bigger the gap is between the two setpoints, the more useful
information there is, and the better the time constants are
estimated. Fig. 3 and 4 confirm this intuition, since at least 10
days of data sampled at rate 10 minutes and a gap greater than
2 ◦C are needed to estimate the slow time constant. Whereas
UA and g (not displayed) are robustly estimated, the slow time
constant estimate may indeed explode when violating these
conditions. Table II reinforces the fact that it is difficult to get
a very accurate estimate of this parameter in any case, while a
small bias remains for the fast time constant. The time-scaled
method [4] is a promising track to adress this issue.

V. CONCLUSION

In this article, we suggest that RC networks, typically of
order 2, are suitable to model the dynamic thermal behaviour
of single-zone buildings. Indeed, when the model is learned
via the EM algorithm, the numerical experiments that we
conducted indicate that inference can be drawn about the main
physical parameters of the building from one or two weeks of
recorded data. The static parameters UA and g are specifically
robustly estimated. Moreover, the chosen framework has the
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Figure 4. Boxplots of the N = 100 estimations of UA (top left corner), the
fast time constant (top right corner) and the slow time constant (bottom line),
against the cooling setpoint. The heating setpoint was 21 ◦C, and the data
length is 7 days. The true values are the horizontal dashed lines.

advantage of relying on theoretical statistical foundations. This
allows us to provide confidence intervals of the parameters
of interest. For an open loop model, we use the CLT to do
so. Even though the CLT does not remain true when the
data are generated in closed loop, the numerical experiments
show that it is a sensible approximation. A forthcoming article
will demonstrate the theoretical validity of this approach for
our application. Finally, we emphasize the dependency of the
quality of the estimates, in particular of the time constants, on
the informative content of the data.
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bâtiment à partir de sa courbe de charge,” Ph.D. dissertation, École
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