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ABSTRACT

The problem of off-grid target detection with the normalized

matched filter (NMF) detector is considered. We show that

this detector is highly sensitive to off-grid targets. In partic-

ular its mean asymptotic detection probability may not con-

verge to 1. We then consider two solutions to solve this off-

grid problem. The first solution approximates the Generalized

Likelihood Ratio Test (GLRT) by oversampling the resolution

cell; this solution may be computationally heavy and does not

permit to compute a theoretical detection threshold. We then

propose a second solution based on the matched subspace

detection framework. For Doppler steering vectors, the sub-

space considered is deduced from Discrete Prolate Spheroidal

Sequence vectors. Simulation results permit to demonstrate

interesting performance for off-grid targets.

Index Terms— Off-grid, normalized matched filter,

matched subspace detector, discrete prolate spheroidal se-

quences

1. INTRODUCTION

In classic radar processing, since the target parameters (for

instance range, Doppler or angle) are unknown, different

matched filter operations (range matched filter, Doppler pro-

cessing, array beamforming) are applied for different pa-

rameter hypotheses in order to retrieve the target. These

hypotheses define a grid in the parameter space. However

target parameters never lie exactly on the resolution grid,

and some processing loss is thus observed due to a mismatch

between the closest grid point and the true target steering vec-

tor. For the famous matched filter detector - optimum in the

Gaussian noise case -, this loss may reach 3dB near the edge

of the resolution cell for one single dimension when grid sam-

ples are separated by the radar resolution. It is nonetheless

generally accepted as such during the radar design stage.

Although the matched filter detector is optimal in Gaus-

sian noise, the need for a different detector has grown to deal

with impulsive non Gaussian noise or partially homogeneous

Gaussian noise. This has led to the Normalized Matched Fil-

ter (NMF) detector, that is well adapted to signal detection in

non-Gaussian clutter. This detector, extensively studied in the

past years [1,2], is CFAR-texture (Constant False Alarm Rate)

and thus robust to strong clutter spikes, but has been proved

to be dramatically sensitive to angle mismatch [3]. To our

knowledge, the problem of off-grid targets has not been raised

in the literature. This paper intends to fill this gap by study-

ing the behavior of the NMF for off-grid targets. We show

in section 2 of this paper that the angle mismatch between

the off-grid target and the steering vector under test may be

quite important at the edge of the resolution cell, compared

to the detection threshold value. This phenomenon may lead

to strong performance loss: assuming the target is uniformly

distributed in the resolution cell, the mean asymptotic detec-

tion probability of the NMF may not be equal to 1! Thus the

NMF detector cannot insure good detection performance even

for an arbitrarily high SNR.

This study thus requires to modify the NMF detection

strategy to solve the off-grid target problem. We consider two

possible solutions. The first solution presented in section 3.1

approximates the GLRT by oversampling the resolution cell

and taking the maximum output over the oversampled grid.

This natural strategy, despite its good performance, raises two

drawbacks. First it requires a sufficiently high factor of over-

sampling to guarantee good performance (especially for small

false alarm probabilities), thus increasing the computational

cost. Second analytical computation of the detection thresh-

old is difficult.

We thus propose in section 3.2 a different solution based

on the matched subspace detection framework [1,4]. The idea

is to approximate the manifold spanned by the target steer-

ing vectors over the resolution cell by a linear subspace and

to consider the normalized matched subspace detector corre-

sponding to that subspace. One advantage of this approach

is the possibility to derive the analytic detection threshold for

a given false alarm probability. We show here that the best

subspace for the off-grid target problem with Doppler steer-

ing vectors is deduced from Discrete Prolate Spheroidal Se-

quence vectors [5]. Simulations show that this new approach

provides interesting performance, better than the simple on-

the-grid NMF, and that it can even compete with the GLRT

solution for small oversampling size.

2. NMF DETECTOR IN PRESENCE OF AN

OFF-GRID TARGET

2.1. Off-grid target detection problem

In this paper, we will only consider for simplicity the common

Doppler case. Considering a transmitted signal composed of

a train of Np pulses with pulse repetition interval Tr, the re-
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ceived signal y for a given time delay can be represented by

a vector of size Np, and the corresponding Doppler steering

vector is given by

s(ν) =
[

1, ej2πνTr , ej2πν2Tr , . . . , ej2πν(Np−1)Tr

]T

for Doppler parameter ν. In such a setting, the size of the

Doppler resolution cell is provided by ∆ν = 1/(NpTr) and

the Doppler ambiguity is νambig = 1/Tr; there are then ex-

actly Np resolution cells in the Doppler ambiguity. Without

loss of generality, we will consider that the centers of the reso-

lution cells are located at grid values {0,∆ν, 2∆ν, . . . , (Np−
1)∆ν}. Then, the Doppler parameter ν of an hypothetic target

located in a given Doppler celln ∈ {0, . . . , (Np−1)} can take

any value in the interval Vn = [n∆ν−∆ν/2, n∆ν+∆ν/2].
As long as ν 6= n∆ν, the target is located off-grid.

The detection problem in presence of an off-grid target

can be described by the following hypothesis testing problem:
{

H0 : y = n,
H1 : y = As(νt) + n, νt ∼ U(Vn),

where y is the received signal for a given delay, s(νt) is

the signal contribution with νt the target Doppler shift as-

sumed uniformly distributed in the n-th resolution cell Vn,

A is the unknown complex signal amplitude and n is a zero-

mean compound Gaussian noise [2] with covariance matrix

Γ. Since adaptive detection is beyond the scope of this pa-

per, we will assume throughout this article that Γ is known.

Of course, two-step detection will be simply obtained by

replacing Γ in the proposed detectors by its estimated coun-

terpart, for instance the classic Sample Covariance Matrix for

Gaussian noise or the Fixed Point estimator for Spherically

Invariant Random Vector (SIRV) noise [6].

2.2. NMF detector

Let us first assume that the parameter ν is known. When the

noise variance is unknown, the associated GLRT is given by

the normalized matched filter (NMF):

TNMF =
|sH(ν)Γ−1y|2

(sH(ν)Γ−1s(ν))(yHΓ−1y)

H1

≷
H0

τ = cos2 θS

Interestingly, this detector also corresponds to the asymptotic

solution in the SIRV case [2]. It presents some interesting fea-

tures. First it is CFAR-texture, i.e. it is invariant to the noise

power density for SIRV noise (or to the variance in the Gaus-

sian case with unknown variance). Second, since the NMF

test statistic can be written as cos2 θ where θ is the angle be-

tween vectors s(ν) and y, it can be geometrically represented

by a double cone with aperture angle θS ; any points falling

inside this cone are detected by the NMF.

The NMF specific geometry also implies some draw-

backs: it has been shown in [3] that the NMF detector is

not very robust to signal mismatch. In particular, if the true

steering vector s(ν) differs from the steering vector under test
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Fig. 1. On-grid NMF output testing ν = 0 versus true Doppler

parameter νt, and detection thresholds for various PFA rang-

ing from 10−2 to 10−8. Γ = INp
.

s(νt) by an angle θ(ν) > θS , then the asymptotic detection

probability when the target SNR tends to infinity becomes

equal to 0 [3].

2.3. On-grid NMF detector in presence of off-grid target

In the off-grid target detection problem, testing on-grid steer-

ing vector s(νt) whereas the true Doppler parameter is ν
corresponds to a mismatch situation, that may lead to strong

degradation of the detection probability depending on the

mismatch angle between s(ν) and s(νt) compared to the

threshold. Figure 1 presents the evolution of the detection

test for true steering vectors inside the resolution cell with

respect to the detection thresholds for different false alarm

probabilities. Clearly the detection test output decreases on

the edge of the Doppler cell below the detection threshold

for false alarm probabilities smaller than PFA = 10−3. This

has a dramatic impact on the mean (over the resolution cell)

asymptotic detection probability.

Let us denote by PD(|A|, ν) the detection probability pro-

vided for a given false alarm probability by the NMF detector

testing s(νt) in presence of a target with steering vector s(ν)
and amplitude A. Assuming that the target is uniformly dis-

tributed in the resolution cell, and using results on asymptotic

detection probability of the NMF in presence of signal mis-

match stated above [3], the mean (over the resolution cell)

asymptotic detection probability can be computed as:

lim
|A|→+∞

Pmean
D = lim

|A|→+∞

∫ ∆ν
2

−∆ν
2

PD(|A|, ν) dν

=
1

∆ν

∫ ∆ν
2

−∆ν
2

Iθ(ν)≤θS dν, (1)

where IΩ is the characteristic function of the set Ω, i.e.

IΩ(x) = 1 if x ∈ Ω, 0 otherwise, and θ(ν) is the mismatch

angle between s(ν) and s(νt). Let us simply notice here

that for the case considered in Figure 1, the mean asymp-

totic detection probability is not equal to 1 for false alarm

probabilities lower than PFA = 10−2 since on the edge of

the resolution cell the mismatch angle becomes larger than

2016 24th European Signal Processing Conference (EUSIPCO)

1927



the detection threshold. On the contrary the classic Matched

Filter detector would present a mean asymptotic detection

probability equal to 1 for any false alarm probability. Thus

the on-grid NMF detector is much more sensitive to the grid

problem than the on-grid MF detector, and solutions must be

proposed to deal with off-grid targets.

3. SOLVING THE OFF-GRID TARGET PROBLEM

In this section, we consider two solutions for dealing with the

off-grid target problem. The first one is based on the classic

GLRT and tries to estimate the Doppler of the target. The

second one is based on a matched subspace detector strategy.

3.1. GLRT solution

The classic GLRT strategy consists in injecting the Maximum

Likelihood estimate of the target Doppler shift into the NMF

detector. Since the Doppler parameter only arises under hy-

pothesis H1, this resorts to considering the following test for

the n-th resolution cell Vn = [n∆ν −∆ν/2, n∆ν +∆ν/2]:

TNMF−GLRT = max
νt∈Vn

|sH(νt)Γ
−1y|2

(sH(νt)Γ−1s(νt))(yHΓ−1y)

H1

≷
H0

τ.

Geometrically speaking, this detection test projects the re-

ceived signal y onto the 2D-manifold Dn defined by any vec-

tor of the form As(ν) with ν ∈ Vn. However this projection

cannot be performed analytically. Thus in practice, it will

generally be solved numerically, by oversampling the doppler

cell under test and maximizing the detection test over the

oversampled grid.

This strategy, that approximates the theoretical GLRT so-

lution, raises two problems:

• The oversampling factor should be based on the following

trade-off: a large oversampling factor will lead to good

performance at the expense of a high computational cost

while a small oversampling factor will present a lighter

computational cost but poorer performance.

• Since the steering vectors provided by the oversampled

grid are necessarily correlated (since they are separated by

less than the Doppler resolution cell), the detection tests

for the oversampled steering vectors are not independent,

and it is thus difficult to compute the theoretical detection

threshold assuring a given false alarm probability. This

implies that the detection threshold can only be obtained

by testing over a sufficiently large set of secondary data

identically distributed as the data under test. Such a set

may not always be available.

3.2. Matched subspace solution

We propose here a different solution to solve the problem of

off-grid targets based on a matched subspace detector [1]. The

idea here is to approximate the nonlinear 2D-manifold Dn by

a linear subspace of dimension m.

3.2.1. Normalized Matched Subspace Filter

For simplicity, let us first consider the equivalent “whitened”

formulation of the hypothesis testing problem:

{

H0 : yw = nw (noise only),
H1 : yw = Asw(ν) + nw (signal + noise),

where yw = Γ−1/2y, sw(ν) = Γ−1/2s(ν) and nw =
Γ−1/2n are respectively the whitened measurement vector,

whitened signal and whitened noise.

Instead of considering the steering vector sw(ν) with un-

known ν, we propose to consider the subspace of dimension

m that best represents the 2D-manifold defined by the set of

steering vectors sw(ν) for ν in the resolution cell. The choice

of this subspace and its dimension will be detailed in the next

subsections. Let us for now simply reformulate the hypoth-

esis testing problem as a subspace detection problem in the

considered resolution cell:

{

H0 : yw = nw (noise only),
H1 : yw = Un,wβ + nw (signal + noise),

where the columns of the matrix Un,w of size Np × m de-

fine an orthonormal basis for the chosen linear subspace (i.e.

UH
n,wUn,w = Im), and β is a vector representing both the

target amplitude and the decomposition of the target steering

vector along the subspace dimensions. For such an hypothesis

test, the normalized matched subspace filter (i.e. the subspace

counterpart of the NMF detector) is given by [1, 7]:

TNMSF =
‖UH

n,wyw‖2
yH
w yw

H1

≷
H0

τ.

Under H0, in the compound Gaussian case, this test statis-

tic can be written as a ratio between two independent cen-

tered chi-square variables with 2m and 2(Np − m) degrees

of freedom respectively, so that the false alarm probability as-

sociated to this detector is the false alarm probability for the

normalized matched subspace filter provided by [1]:

PNMSF
FA = 1−Bτ (m,Np −m) ,

where Bx (a, b) is the incomplete beta function. This false

alarm probability depends on the threshold τ , the dimension

of the steering vector Np and the dimension m of the consid-

ered linear subspace.

In contrast, under H1, the exact detection probability for

the proposed detector in presence of an off-grid target dif-

fers from the classic detection probability for a subspace de-

tector, due to the mismatch between the true signal steer-

ing vector and the considered subspace. Decomposing sw(ν)
and nw in the basis defined by Un,w and U⊥

n,w where the

columns of U⊥
n,w defines a basis of the subspace orthogonal

to the subspace spanned by Un,w (thus UH
n,wU

⊥
n,w = 0),

we can write sw(ν) = Un,wβ1(ν) +U⊥
n,wβ2(ν) and nw =
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Un,wn1+U⊥
n,wn2, where β1 and n1 are vectors of length m

and β1 and n2 are vectors of length Np −m. Besides, in the

compound Gaussian case with texture α, the noise terms can

be expressed as n1 =
√
αx1 and n2 =

√
αx2 where x1 and

x2 are complex white Gaussian vectors of size m and Np−m
respectively. Then the test statistic can be rewritten as:

TNMSF |H1 =
1

1 + ξ2
ξ1

H1

≷
H0

τ ⇔ ξ1
ξ2

H1

≷
H0

τ ′ =
τ

1− τ

Np −m

m

where ξi = ‖Aβi(ν)√
α

+ ni‖2 for i = 1, 2 is a noncentral chi-

square variable conditionally to α with di degrees of freedom

and noncentral parameter µν,α,A
i = |A|2‖βi(ν)‖2/α; d1 =

2m and d2 = 2(Np−m). The mean (over the resolution cell)

detection probability for the proposed off-grid detector is then

provided by

Pmean
D (|A|) = Eν [PD(|A|, ν)] , (2)

where

PD(|A|, ν) = 1−
∫ +∞

0

F (p1, p2;λ1, λ2; τ
′) p(α) dα,

with F (p1, p2;λ1, λ2;x) the doubly noncentral F-distribution

with degrees of freedom p1 = 2m and p2 = 2(Np − m),

noncentral parameters λ1 = µν,α,A
1 and λ2 = µν,α,A

2 , com-

puted at value x. This doubly noncentral F-distribution can

be numerically evaluated using the saddle point approxima-

tion provided in [8].

3.2.2. Choice of the subspace basis

The best subspace to consider should be the one maximizing

the mean (over the resolution cell) detection probability for a

given SNR or set of SNRs. This is a non trivial problem, that

also presents the drawback to provide a solution depending

on the SNR considered. It seems natural, more reasonable but

still legitimate to use the subspace of dimensionn minimizing

the mean square error of the steering vector projection for a

given distribution of ν, i.e. :

Un,w = arg min
Un,w

Eν

[

‖ sw(ν) −Un,wU
H
n,wsw(ν) ‖2

]

(3)

In the sequel, we consider that ν is uniformly distributed over

the resolution cell. In the white noise case, i.e. Γ = INp
so

that sw(ν) = s(ν), it has been shown for Matching Pursuit

applications [9, 10] that the solution of (3) for a given dimen-

sion m is provided by the m first eigenvectors of the matrix

Mn =
[

s(n∆ν)sH(n∆ν)
]

⊙BNp,
1

2Np

where ⊙ represents the component-wise matrix multipli-

cation and the (k, l) entry of matrix BN,W is given by

(BN,W )k,l = 2W sinc(2W (k − l)). Eigenvectors of this

matrix are the well-known Discrete Prolate Spheroidal Se-

quence (DPSS) vectors [5]. Using an approach similar to

the one used in [10], it can be shown that for a non-identity

noise correlation matrix, the solution of (3) is provided by the

eigenvectors of the following matrix:

Mn,w = Γ− 1

2MnΓ
− 1

2 ;

These eigenvectors can be considered as whitened DPSS. We

will use the first m whitened DPSS stacked in matrix Un,w

for off-grid target detection.

Once the general subspace basis has been chosen, it re-

mains to determine the best number of dimensions m to con-

sider. Note that m = 1 would already provide better detection

performance than the classic on-grid matched filter, although

the observed gain is small. It is much preferable to increase

the number of dimensions. However if increasing the sub-

space dimension permits to capture more deeply the signal

manifold, it also increases a lot the noise contribution in the

signal subspace. Thus there exists a trade-off value for the

dimension m. When comparing the detection probabilities

provided by (2) for different m around the interesting range

(i.e. around 0.9), it appears that the best choice generally cor-

responds in our case to m = 2.

4. SIMULATIONS

In this section, we present detection performance in terms

of mean (over the cell) detection probabilities obtained from

Monte Carlo simulations. The steering vector considered is

of length Np = 10. The noise is distributed according to

a K-distribution with shape parameter γ = 5. Performance

of the on-grid NMF is computed and compared to the per-

formance of the NMF-GLRT detector for several oversam-

pling grid where the oversampling factor ranges from 2 to 4,

and to the performance of the NMSF detector computed over

a DPSS subspace of dimension m = 2. Are also consid-

ered for comparison the theoretical mean detection probabil-

ity provided by (2), the mean asymtotic detection probability

given by (1), and the detection probability of the NMF detec-

tor with νt known. This last case provides an upperbound on

the detection probability (target is located on the grid). Re-

sults are presented in Figure 2 and 3 for false alarm probabil-

ities PFA = 10−4 and PFA = 10−6 respectively.

Simulation results show that the on-grid NMF presents

poor detection performance. In particular, its detection per-

formance does not converge to 1 for the considered false

alarm probabilities, as shown above. The two proposed

strategies for dealing with the off-grid targets provide better

performance: as expected, the best performance is provided

by the NMF-GLRT detector with an oversampling factor

sufficiently large; indeed for a small oversampling factor,

detection performance tends to be degraded by the same phe-

nomena as for the on-grid NMF detector, although the effect

is much less dramatic. The NMSF-DPSS detector provides

slightly worse performance than the NMF-GLRT with over-

sampling factor 4. However it appears that it is better than the

NMF-GLRT with oversampling factor 2 for sufficiently high

SNR, especially for small false alarm probabilities common
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Fig. 2. Mean detection probabilities for the NMF with νt
known, the on-grid NMF, the NMF-GLRT computed on over-

sampled grid with oversampled factors ranging 2, 3 and 4 and

the DPSS NMSF with m = 2. PFA = 10−4, K-distributed

noise with shape parameter γ = 5 and Γ = INp
, Np = 10.

in radar. Similar conclusions are observed for different shape

parameters γ.

5. CONCLUSION

In this paper, we have shown that the NMF detector is very

sensitive to off-grid targets. We have thus proposed two solu-

tions to solve the off-grid target detection problem in the NMF

framework. The first solution corresponds to the GLRT; it

consists in approximating the angle between the received sig-

nal and the steering vector manifold by oversampling the res-

olution cell and keeping the maximum output; although this

solution is the most performant in terms of detection prob-

ability, it may be computationally heavy for high oversam-

pling factors, and due to the correlation between the different

samples, one cannot compute the theoretical detection thresh-

old. We have thus proposed a second solution that consists

in computing the angle between the received signal and a

good subspace capturing most of the signal manifold. For

Doppler steering vectors, this subspace is provided by a set

of whitened Discrete Prolate Spheroidal Sequences. Simula-

tion results permit to demonstrate interesting performance for

off-grid targets.
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