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Abstract—A new method for aliasing reduction in soft-clipping
nonlinearities is proposed. Digital implementations of saturating
systems introduce harmonic distortion which, if untreated, gets
reflected at the Nyquist limit and is mixed with the signal. This
is called aliasing and is heard as a disturbance. A new correction
function, derived by integrating the bandlimited ramp function, is
presented. This function reduces the level of aliasing distortion
seen at the output of soft clippers by quasi-bandlimiting the
discontinuities introduced in the second derivative of the signal.
The proposed method increases the quality of the signal by
attenuating those aliased components that lie on the lower end
of the spectrum, which are known to be perceptually important.
The four-point version of the algorithm reduces aliasing at
low frequencies by up to about 50 dB. This work extends our
understanding of aliasing in nonlinear systems and provides a
new tool for its suppression in virtual analog models.

I. INTRODUCTION

Analog audio systems such as musical instruments, tube
amplifiers, and loudspeakers exhibit highly nonlinear behavior.
A conventional approach when modeling audio systems in
the digital domain has been to assume linearity and time-
invariance, and proceed using traditional digital signal pro-
cessing techniques [1]. While feasible, systems modeled in
this fashion will not exhibit the same performance as their
analog counterparts and may be unsuitable for their intended
purpose. In digital audio systems, nonlinearities are commonly
used to control oscillation dynamics in models with feedback
and to provide a natural overdrive response [2]–[4]. Nonlinear
audio processing is particularly relevant in systems such as
virtual analog models of effects devices and guitar amplifiers
[4], and in peak limiting [5]. The latter includes tools like
compressors and limiters which are commonly used in music
production and sound reproduction systems.

An inherent property of nonlinear audio processing systems
is that they introduce frequency components not present in
the original input signal. This property is responsible for the
perceived analog warmth of the system [3], [6]. When the
frequency of the new spectral components exceeds the Nyquist
limit, or half the sampling frequency, they are reflected into
the audio band, causing aliasing [3]. This phenomenon can
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severely affect sound quality by producing audible distur-
bances such as beating and inharmonicity [7]. Nevertheless,
if the aliased spectral components are sufficiently attenuated,
they become inaudible, as they fall below the hearing threshold
or are masked by other spectral peaks [7], [8]. This paper
presents a novel method to suppress aliasing distortion in
nonlinear audio processing systems.

Oversampling is currently a standard antialiasing method
in nonlinear audio processing [3], [9]. In this approach, the
input signal is first upsampled by an integer factor (e.g. eight).
Following the nonlinearity, the oversampled signal is lowpass
filtered and downsampled back to the original rate. This is
a means whereby aliasing can be largely avoided. The main
drawback of oversampling is the increased computational cost
of operating at a high sample rate and of implementing the
necessary up- and downsampling filters.

Other existing alias-reduction approaches include lowpass
filtering the signal before it is fed to the nonlinear stage [10]
and modification of the nonlinearity [2]. The first of these
can be expanded into a parallel bank of antialiasing filters
and increasing-order nonlinearities, a configuration known
as the harmonic mixer [1], [10]. The harmonic mixer can
completely eliminate aliasing, but its computational cost is
proportional to the order of the implemented nonlinearity.
When the nonlinearity is of high order the harmonic mixer
becomes wasteful. Modifying the nonlinearity, as suggested
by Thornburg [2], involves reducing the order of the system
with the intention of limiting the bandwidth of the resulting
spectrum. However, doing so can compromise the overall
quality and behavior of the system, as high-order harmonic
distortion is not reproduced.

Recently, we introduced the idea of reducing aliasing pro-
duced by hard clipping using a bandlimited ramp (BLAMP)
function [11]–[13]. This method can be cascaded with a low-
order approximation of a nonlinear function to arrive at an
alias-suppressed soft-clipping system. It turns out that the
BLAMP method works best for the hard-clipping stage only
[12], and for other waveshaping devices new antialiasing
methods are still needed.

This paper presents a new technique to reduce aliasing
caused by a memoryless waveshaper. By analyzing a piecewise
saturating function, it was observed that it generated disconti-
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Fig. 1. Example of a memoryless waveshaping function, which maps the input
signal values nonlinearly to its output. For input signal values between −1
and 1, a continuous polynomial function is used. Larger values are clipped.

nuities in the second derivative of the signal. A correction
function derived by integrating the BLAMP function was
designed to tackle these discontinuities directly on the soft-
clipped signal. When combined with oversampling by factor
2, the proposed method reduces the level of aliasing distortion
for input signals with fundamental frequency below 8 kHz. As
aliasing is more audible at low and mid frequencies than at
high frequencies, and especially below the lowest fundamental
frequency appearing in the audio signal [8], this approach leads
to a perceptually enhanced signal.

This paper is organized as follows. Section 2 discusses
aliasing caused by waveshaping using a memoryless nonlin-
earity. Section 3 introduces the new method which is based
on the integrated BLAMP function. Section 4 evaluates the
performance of the proposed algorithm. Finally, Section 5
provides concluding remarks.

II. ALIASING IN MEMORYLESS NONLINEARITIES

In the digital domain, the saturating behavior of analog
audio systems is usually assumed to be memoryless and can
be emulated using piecewise continuous functions [3]. These
functions typically consist of a low-order polynomial that
models the non-saturating portion of the system followed
by a saturation. Using a first-order polynomial to model
the non-saturating behavior results in the special case of a
hard-clipper. In hard clipping, signal values that exceed a
predetermined threshold are set to this threshold, while the
remaining signal values are unaltered. This process introduces
discontinuities in the first derivative of the clipped signal,
which require infinite bandwidth and are a major source of
aliasing [5], [11], [12]. When higher-order polynomials are
used, the transition from non-clipping to clipping samples is
made gradual (i.e. softened) rather than abrupt, and as a result
aliasing is reduced. However, due to their piecewise nature

these functions are not completely exempt from aliasing, as
shown in this work.

We begin our study of aliasing in soft piecewise nonlin-
earities by considering a soft-clipping algorithm designed by
Yamaha and included in one of their early digital multi-effects
processors [14]. This algorithm is defined as

c(x) =

{
3x
2 −

x3

2 when |x| < 1

sgn(x) otherwise ,
(1)

where x is the input signal value and sgn(·) is the sign
function; c(x) is the soft-clipped output signal. Implementing
an arbitrary clipping threshold L ∈ (0, 1], requires x to be
scaled by 1/L and L before and after processing, respectively.

This soft-clipping function uses a third-order polynomial to
model the non-saturating behavior of the system. This means
that the spectrum of signals that do not exceed the clipping
threshold will be expanded threefold in bandwidth. We isolate
this cubic polynomial cs(x) as

cs(x) =
3x

2
− x3

2
, (2)

and refer to it as the polynomial nonlinearity. Fig. 1 compares
the input–output relationships of (2) and (1). As shown by
this figure, cs(x) exhibits fairly linear behavior at low input
levels and smoothly approaches the clipping threshold. The an-
tialiasing approach proposed in this work tackles the unwanted
distortion components introduced by the saturating behavior
of the aggregate nonlinearity (1), not by the polynomial
nonlinearity. In this case, oversampling by factor 2 will be
sufficient to account for the latter, since the downsampling
filter will prevent harmonics above one third of the Nyquist
limit from appearing.

To illustrate the issue of aliasing introduced by (1), we con-
sider the simple case of a sinusoidal input with fundamental
frequency f0 = 2490Hz. Fig. 2 shows the waveforms and
magnitude spectra that result from clipping this signal with
two different thresholds and an oversampling factor of 2. A
second-order linear interpolation filter was used to upsample
the input signal. The transfer function of this filter is

H(z) = 0.25 + 0.5z−1 + 0.25z−2. (3)

An input sampling frequency fs = 44.1 kHz was used for this
and the rest of the examples included in this study.

As can be observed in Fig. 2, the level of aliasing introduced
by the nonlinearity increases as the clipping threshold L
decreases. For the case of L = 0.95, most aliased components
fall below −100 dB and can therefore be neglected. Overall,
the signals in Figs. 2(a) and (c) exhibit a signal-to-noise ratio
(SNR) of approx. 48 dB and 26 dB, respectively. In this case,
we considered the SNR of a clipped signal as the power ratio
between harmonics and aliased components.

In the previous example, both signals exceeded the clipping
threshold into the saturating portion of the nonlinearity with
different results in terms of aliasing. In order to appreciate
the cause behind this, we can analytically evaluate the first
derivative of the two signals depicted in Figs. 2(a) and (c).
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Fig. 2. Waveform and magnitude spectrum of a 2490-Hz sinusoid clipped
with oversamplibng by factor 2, and (a)–(b) clipping thresholds L = 0.95
and (c)–(d) L = 0.15. In both cases, the dashed line shows the original
undistorted waveform. Circles indicate non-aliased spectral components.

The resulting waveforms are shown in Fig. 3. In these plots,
we observe that a clipping threshold of L = 0.15 introduces
a hard edge similar to that of hard clipping in the derivative
of the signal at the points were the scaled input signal enters
the saturating portion of the aggregate nonlinearity, i.e. when
|x| = 1. This edge or corner translates into a discontinuity in
the second derivative of the signal, which is responsible for
the large amount of aliasing introduced. On the other hand,
for a threshold of L = 0.95 this edge appears to be smooth.

To better understand this behavior we can consider the
continuous-time version of the proposed memoryless soft-
clipping algorithm. This process can be defined as

y(t) = c(x(t)), (4)

where y(t) is the clipped signal as a function of time. Using
the chain and product rules we define the second derivative of
this function with respect to time as

d2y

dt2
=
d2c

dx2

(
dx

dt

)2

+
dc

dx

d2x

dt2
. (5)

For an arbitrary clipping point, we wish to know the value of
this expression at the exact point when |x(t)| = 1. Since we
know dc

dx at this point will be zero, the second term in the
derivative can be eliminated, resulting in

d2y

dt2

∣∣∣∣
|x|=1

=
d2c

dx2

(
dx

dt

)2

. (6)

From (6) we can observe the relation between the input
signal and the size of the discontinuity introduced in the
second derivative of y(t), determined by d2y

dt2 . When a clipping
point occurs at a signal value with small slope [e.g. at the tips
of a sinusoid, as shown in Fig. 2(a)], the curvature at that point
will also be small. At low clipping thresholds, clipping will
most likely occur at signal portions with relatively large slope
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Fig. 3. Waveform for the first derivative of a 2490-Hz sinewave soft-clipped
with threshold (a) L = 0.95 and (b) L = 0.15. Cf. Fig. 2.

values. This will cause the curvature at the clipping points,
and hence the discontinuities introduced, to be higher than for
large clipping thresholds, introducing significant aliasing [15].

To reduce the aliasing in the signal depicted in 3(b), we
could apply the BLAMP method to correct the hard edge
and then integrate the signal. However, due to the difficulties
associated with computing the necessary parameters for such
small signal levels and performing the integration process, we
instead propose implementing the correction process directly
on the actual signal using the integral of the BLAMP function.

III. INTEGRATED BANDLIMITED RAMP FUNCTION

Our previous work has proved the effectiveness of using the
BLAMP function to treat aliasing caused by discontinuities
in the first derivative of a signal [11]–[13]. The closed-form
expression for the BLAMP function is derived by integrating
the bandlimited step (BLEP) function, defined as

h(1)(t) =
1

2
+

1

π
Si(πfst), (7)

where t is time, the superscript (1) denotes this function is
the first integral of the bandlimited impulse [16], and Si(t) is
the sine integral

Si(t) =
∫ t

0

sin(τ)

τ
dτ. (8)

The BLAMP function is then defined as [16]

h(2)(t) = t

(
1

2
+

1

π
Si(πfst)

)
+

cos(πfst)

π2fs
. (9)

Further integration yields the third integral of the bandlimited
impulse or integrated BLAMP:

h(3)(t) =
t2

2

(
1

2
+

1

π
Si(πfst)

)
+ t

cos(πfst)

2π2fs
+

sin(fsπt)

2π3fs
2 .

(10)
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Fig. 4. Waveform for the continuous (a) integrated BLAMP function, (b)
trivial parabolic function, and (c) the integrated BLAMP residual function.
Parameter T = 1/fs is the sampling period of the system.

The integrated BLAMP function (10) is the closed-form
expression for a bandlimited parabolic ramp with unity cur-
vature, as shown in Fig. 4(a). We can then define its trivial
non-bandlimited counterpart [see Fig. 4(b)] as

p(t) =

{
0 when t < 0
t2

2 when t ≥ 0.
(11)

These functions appear to be very similar, but evaluating the
difference between (10) and (11) reveals that they are not
identical, as seen in Fig. 4(c). The resulting function exhibits
odd symmetry and we will refer to it as the integrated BLAMP
residual function.

This residual function can be used to reduce aliasing caused
by the soft clipper by centering it around every clipping point,
scaling it by the second derivative of the output signal at that
point, sampling it at the nearest integer locations (e.g. one or
two on each side), and adding the corresponding samples. To
avoid the computational costs of evaluating the residual func-
tion at every clipping point, the function can be precomputed
and stored in a lookup table. Fig. 5 illustrates the process
of centering the integrated BLAMP residual function at each
clipping point and sampling it at the four neighboring sample
points for a 1245-Hz sinusoid processed with a clipping
threshold L = 0.5. A symmetrical window function has been
applied to these table-based residuals to account for the trivial
truncation of the waveform. As depicted in the figure, the
polarity and orientation of the correction function has to be
adjusted for each clipping point. Parameter d represents the
fractional delay which has to be introduced to center these
residual functions, since in practical implementations clipping
points will most likely not coincide with the system sample
points.

To avoid processing clipping points that occur when the
peak level of the signal is too close to the clipping threshold
L [e.g. Figs. 3(a)–(b)], we can estimate the slope µ of the
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Fig. 5. One cycle of (a) a 1245-Hz sinewave soft-clipped with L = 0.5
and (b) continuous-time (solid) and sampled (dots) windowed integrated
BLAMP residuals centered around every clipping point. The dotted vertical
lines indicate the points where |x| = 1.

input signal at that point and determine whether to proceed
or not. A small µ will mean that the input signal has low-
frequency content or that we are dealing with a peak in the
waveform that is very close to L. In either case, aliases will
be sufficiently low and can be neglected.

IV. EVALUATION OF THE PROPOSED METHOD

The proposed method was tested on the sinusoidal input
described by Fig. 2. As full knowledge of the input signal is
available in this case, the parameters necessary to implement
the correction were computed analytically to simulate a best-
case correction scenario. Fig. 6 shows the spectra of this
signal after two- and four-point integrated BLAMP correction,
i.e. one and two samples corrected on each side of a clipping
point, respectively. These results show clear improvements in
terms of aliasing reduction [cf. Figs. 2(c)–(d)].

Both methods excel at suppressing aliasing at low frequen-
cies, where it is most audible. For instance, the level of the
most prominent aliasing component below the fundamental, at
1550 Hz [see Fig. 2(d)] has been reduced by 38 dB and 50 dB
using two- and four-point correction, respectively. Addition-
ally, the four-point method exhibits better performance than
the two-point method at half the Nyquist limit.

In the previous example, the integrated BLAMP residual
table was generated by evaluating the difference between
(10) and (11) at 1000 points in the range t ∈ [−T, T ] and
applying a Hann window. The windowing is necessary, since
otherwise the non-zero end points of the residual function
would produce discontinuities in the processed signal. Due
to the odd symmetry of this residual, the table size can be
reduced by discarding one of its halves.

In a practical implementation of the proposed method, the
exact signal clipping points will usually not coincide with
the sampling intervals of the system. Therefore, to apply this
method on arbitrary input signals, we need a way to estimate
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Fig. 6. Magnitude spectra for a 2490-Hz soft-clipped sinewave with clipping
threshold L = 0.15 with oversampling by a factor 2, and (a) two-point and
(b) four-point integrated BLAMP correction.

the two necessary parameters: fractional delay d and slope
µ. Previous work recommended the use of inverse linear
interpolation using the two samples nearest to the clipping
point to estimate the two parameters. This approach, however,
limited the operation range of the method to input signals with
fundamental frequencies below 3 kHz [11].

In this work, we propose extending the scope of the esti-
mation process to four samples, two on each side of every
clipping point and using inverse Lagrangian cubic interpola-
tion. For any given clipping point we consider nb to be the
index of the first sample to enter or exit the saturation part of
(1). We define na = nb−1 and nb as the clipping boundaries.
Next, the exact fractional clipping point between na and nb is
estimated by fitting a cubic polynomial to samples x[na − 1],
x[na], x[nb], and x[nb + 1], and using the Newton-Raphson
(NR) method to solve the point at which this polynomial curve
crosses the clipping threshold. The scaling parameter for the
residual function, determined by the curvature, is then derived
from (6) as γ = (−3µ2)/L, where slope µ is obtained as a
byproduct of the NR method.

The use of the integrated BLAMP function provides several
advantages over the previously proposed method [11]. First
of all, in this approach the clipped signal is treated directly,
rather than using a preprocessing stage. Using oversampling
by factor 2 to account for the non-saturating behavior of (1)
also extends the range of input signals which can be processed
by the algorithm, as it facilitates the parameter estimation
process. Additionally, doubling the scope of the correction
method, from two to four points provides improved aliasing
suppression. For instance, for the case of the 2490-Hz sinusoid
with clipping threshold L = 0.15 the 1550-Hz alias (i.e. the
most prominent one below the fundamental) is only attenuated
by 12 dB in the preprocessing method [11].

V. CONCLUSIONS AND FURTHER WORK

This work discussed soft clipping using a piecewise saturat-
ing nonlinearity which was shown to introduce discontinuities
in the second derivative of a signal for low clipping thresh-
olds. A novel correction method, derived from the integrated
BLAMP function, was proposed to suppress the associated
aliasing. Additional, inverse cubic interpolation was suggested
to estimate the parameters necessary for the correction process.
This new method, if combined with oversampling by a factor
2, was shown to exhibit improved performance in terms

of aliasing suppression for input signals with fundamental
frequency below 8 kHz.

Further work on the topic includes the derivation of a poly-
nomial approximation of the integrated BLAMP function [15].
The adaptation of the method for other piecewise nonlinear
functions is left as future work. Sound examples, along with
Matlab code for the proposed method, are available online at
research.spa.aalto.fi/publications/papers/eusipco16-intblamp/.
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