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Abstract—License plate matching plays an important role in
applications like law enforcement, traffic management and road
pricing, where the plate is first recognized and then compared to a
database of authorized vehicle registration plates. Unfortunately,
there are several privacy related issues that should be taken
care of before deploying plate recognition systems. As a scientific
solution to privacy concerns, we propose a simple and accurate
character recognition scheme combined with an integer matching
scheme that is designed to work with encrypted license plates.
Our analysis and experimental results show that the deployment
of such a system can be deemed possible.

Index Terms—License plate matching, character recognition,
secure signal processing, cryptography, homomorphic encryption.

I. INTRODUCTION

License plates are the identity of an automobile which helps
in distinguishing one from another and hence license plate
recognition plays an important role in systems like traffic
management, road pricing, security and crime investigation
[1]. There is an increasing use of license plate recognition
techniques by law enforcement agencies worldwide for
tracking vehicles of interest like stolen and wanted vehicles.
We see that a license plate itself may not be private, but
the use of the collected data can reveal sensitive information
about people and vehicles: any vehicle and its owner can be
identified and tracked easily. Hence, the security of this system
and the privacy have to be guaranteed for the plate detection
system to be used in practice.

In this paper, we focus on the privacy aspect of the license
plate detection systems. We propose to use “secure signal
processing” that relies on cryptographic tools for the privacy
protection [2]. This approach relies on processing encrypted
data by deploying homomorphic encryption schemes, which
makes it possible to perform signal processing algorithms on
encrypted data without leaking sensitive information in an
untrusted environment. The result of the algorithm is only
known to the owner of data.

The fingerprint-based authentication protocol presented
in [3] uses homomorphic encryption for identification of
matching identities. A non-interactive fully-private outsourced
face verification system, working with encrypted feature
vectors and using fully homomorphic encryption, is presented
in [4]. Recommendations generated by encrypting private
data and processing them, and a comparison protocol for
encrypted and packed data, are discussed in [5], where the
active participation of the user is eliminated by introducing a
semi-trusted third party.

To the best of our knowledge, secure plate detection has not
been investigated before. The license plate matching technique
presented in [6] deals with matching plate readings captured
by a dual setup of license plate readers, and the matching
utilizes an edit distance technique of text mining, which
measures the closeness of two strings. In [7], the integration
of license plate and face recognition for security during entry
and exit in parking areas is evaluated, but the matching is
performed between Peak to Side lobe Ratio (PSR) values of
a decrypted plate/face image from the database (as they are
stored in the database after encrypting using Hill Cipher matrix
manipulation) and a plain plate/face image.

The focus of this work is to develop a system for securely
matching license plates such that the license plate and the
information associated with it are protected. In this paper
we investigate scenarios involving multiple parties, for exact
matching of car license plate numbers. Consider a scenario
which involves an office parking lot that has the database
of employee and visitor vehicle license plates, and a security
agency with a license plate of a potential criminal’s vehicle
that they are trying to track. The security agency wants to
find whether that particular vehicle has entered the parking lot.
Both entities would like to keep their data hidden from each
other, yet perform the required processing to obtain the results.
The license plate value, whose existence in the database is
to be checked, is encrypted and sent to the office to do the
matching. In such a setting, the office does not learn any
information about the license plate it receives from the agency,
as it is in encrypted format. The agency might get to know
whether the vehicle has entered the office parking lot or not
but no details about the other license plates in the database
should leak. Thus, the information belonging to both entities
is secured.

This work has multiple contributions. Firstly we present
a character recognition system which could be easily
translated to the encrypted domain. Secondly, we compare the
proposed character recognition algorithm with some of the
state-of-the-art techniques, and prove that it has high success
rates, and is comparable to the currently used techniques.
Thirdly, we design secure protocols for exact matching of
license plates for three different scenarios using two different
cryptographic tools, namely additively homomorphic and fully
homomorphic encryption schemes. Lastly, we implement the
protocols and analyze the results, and their performances are
compared for license plate databases of twenty-one different
sizes. Our analyzes shows that the proposed cryptographic
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protocols have high performance and are promising to be
deployed in practice.

II. PRELIMINARIES

The primary operations involved in a character recognition
system are thresholding, vertical projection histogram ([8], [9])
and feature extraction ([9], [10]). Discretization of the colors in
an image into a number of bins, and then counting the number
of pixels in each bin, forms a color histogram; in a vertical
projection histogram, the columns form the bins instead of
the color intensity. In feature extraction, the input image is
transformed to a reduced set of features that contain the
relevant information from the input, and the desired processing
operations are performed by using this reduced representation.

The important cryptographic algorithms that are used for
designing the secure data matching systems are Paillier [11]
and a version of Gentry’s fully homomorphic cryptosystem
[4]. These are algorithms for public key or asymmetric
cryptography, which requires two separate mathematically
linked keys: a private and a public key. Paillier encryption
is a probabilistic algorithm, whose security is based on
the difficulty of computing nth residue classes, whereas
the extended Gentry’s system is Goldreich-Goldwasser-Halevi
(GGH)-type based on ideal lattices. For a detailed description
of the fully homomorphic system, we refer the readers to [12]
and [4].

III. LICENSE PLATE MATCHING

The secure license plate matching system comprises of two
main phases: the extraction of characters from the plate, and
the exact matching of a license plate with a database of license
plates.

A. Extraction of license plate characters

The input license plate image is subject to thresholding
and border removal. The characters are segmented from the
thresholded image by using vertical projection histogram
method. Using this method, the areas containing continuous
black pixels are detected and those areas are cropped
out. The cropped out areas, which correspond to character
images, are converted to one-dimensional arrays, both
height-wise (y-direction) and width-wise (x-direction). These
one-dimensional arrays are then converted to an array of
blocks, where each block holds the sum of pixel intensities of
the pixels in that block. The array of blocks is then converted
to a feature array which consists of +1’s and −1’s. Feature

array value at position i =

{
+1, if block[i+ 1] < block[i];
−1, otherwise.

This feature array is compared to the standard feature
arrays, obtained using the same method, for each character
in a standard character set. The character of the standard set
yielding the minimum difference is predicted as the correct
character. To make the algorithm robust, predictions are made
for different block sizes, and the most common or most likely
character is considered as the desired character.

Let the feature of license plate characters be represented
by P = p1, p2, . . . pb, and the feature for the standard array
be represented by Q = q1, q2, . . . qb, where b represents the
number of blocks into which the one-dimensional array is
divided. The difference of features P and Q, denoted by diff,
is measured as

diff =
b∑

i=1

(pi − qi)
2 (1)

where the pi’s and qi’s are either +1 or −1.
The above mentioned steps of the algorithm are applied for

each of the segmented characters yielding a list of characters
corresponding to the characters in the license plate. The
character list thus obtained is first converted to integers by
mapping the characters A to Z to integers 10 to 35. Then
the six integers representing the license plate characters are
concatenated to form an integer. Each integer value is between
0 and 35, and hence requires 6 bits for representing. Let
a5, a4, a3, a2, a1, a0 be the integers, then a is the concatenated
integer.

a =
5∑

i=0

ai · 26·i (2)

Fig.1 shows the different steps involved in extraction of
characters for the dutch license plate “35-GNH-4”.

Fig. 1. (a) License plate image after thresholding, (b) Ranges of continuous
black pixels in (a), (c) Segmented character in range (32,81) of (b), (d) Feature
array of character ’3’ for block-size 100 in x and y direction, (e) Predicted
characters for the license plate in (a), (f) Integers representing the alphabets
and the concatenated integer representing the characters of the license plate
in (a)

B. Matching of the license plate values

This is performed in the encrypted domain, and involves
operations on integers. The license plate for which the match
has to be found is referred to as the test plate, and is
matched against a database of license plates. The license
plate characters are represented as integers and for matching,
the difference between the integer corresponding to the test
plate and each entry in the database (which is also an integer
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obtained using same method) is calculated. If there is a zero
among the differences, it implies that the test plate value has
a matching entry in the database.

The integer comparison protocol described in [13] is a
bit-wise operation, performing computations on encrypted bits
of two values. The protocol for equality testing described here
finds the difference between two encrypted numbers and is a
more suitable approach for this scenario as we need to find
the difference of one value to a set of values in a database.

A entity with the test license plate

x integer representing the test license plate characters

B entity with a database of license plates

s number of plates in the database

yi integers representing license plate characters for i = 0...s

k number of bits representing the license plate characters

T trusted third party

pk public key of cryptosystem

sk secret or private key of cryptosystem∑
sum of the elements∏
product of the elements

[[var]] variable var encrypted using Paillier encryption

[var] variable var encrypted using Gentry’s extended fully homomorphic system
TABLE I

NOTATIONS

Three scenarios are considered here for secure matching of
license plates using homomorphic encryption. We assume that
all the entities involved in these scenarios are honest.

1) Scenario 1: In this scenario two entities A and B are
involved. A has the public and private keys and a test plate,
and wants to find whether this plate is present in the database,
which is in possession of B. The exact matching operation
is performed at B but the result, whether there is a match or
not, is known by A only. Here the database at B is stored
in plaintext format, as the encryption depends on the keys,
which are possessed by A, and hence B cannot be encrypted
and stored.

A can be a police agency whereas B could be the security
agency for an organization who keeps track of all the vehicles
entering and leaving the office premises.

The two protocols for secure license plate matching
in Scenario 1, i.e. using Paillier encryption and Gentry’s
extended fully homomorphic cryptosystem, are described here.

Protocol 1 - Paillier encryption:

1) A sends pk and [[x]], the latter encrypted using pk to B.
2) The difference between the test plate integer [[x]] and

each element [[yi]] at B is computed by B in the
encrypted domain as

[[di]] = [[x− yi]] = [[x]] · [[yi]]−1. (3)

3) At B, the differences are blinded so that when the results
are sent to A, A does not learn any information about
the data at B other than if there is a match or not:

[[d̂i]] = [[di ·R]] = [[di]]
R, (4)

where R is a random integer. The difference value
being zero implies that there is a match and this value
will remain unaltered when multiplied by R. For other
difference values, multiplication by R yields a random
value from which no information about the database
entries can be inferred by A.

4) For reducing communication costs, the [[d̂i]] values are
packed as follows before being sent back to A:

[[d̂p]] = [[
s−1∑
i=0

d̂i · 2k·i]] =
s−1∏
i=0

[[d̂i]]
2k·i

, (5)

where k is the number of bits representing the license
plate characters, and s represents the number of license
plates in the database.

5) The differences are randomized (before packing) so that
if there is a match, one cannot predict which entry of
the database was the match, which would otherwise leak
some information about the position of the test plate
entry in the database. The randomization is performed by
taking database entries in scattered order while packing
(i.e. thei’s in Equation 5 are permuted).

6) The results are decrypted at A using sk and if there is a
zero among the decrypted values, then A can conclude
that there was a match for the test plate in the database.

(modn2) is not mentioned at each formula.

Protocol 2 - Gentry’s extended fully homomorphic
cryptosystem: The steps are the same as in Protocol 1 but
the corresponding operations using Gentry’s extended fully
homomorphic cryptosystem are:

The difference calculation at B (similar to Equation 3)

[di] = [x]− [yi], (6)

the blinding of differences at B (similar to Equation 4)

[d̂i] = [R · di], (7)

where R is a random integer, and packing of the blinded
difference values at B (similar to Equation 5)

[d̂p] =
s−1∑
i=0

[d̂i] · 2k·i, (8)

where k is the number of bits representing the license plate
characters, and s represents the number of license plates.

2) Scenario 2: Two entities A and B are involved.
B has the public and private keys, and sends the public
key and the yi’s in encrypted form to A. The difference
calculation is carried out in encrypted domain at A, and
the encrypted results are sent back to B. B decrypts the
differences, and finds if there is a match or not, and sends
this to A. Here the database at B can be stored in encrypted
format but the result is known to both entities. This is
useful if the database has to be stored in encrypted form,
preventing information leakage from the database. It is
also reasonable to allow the computation to be performed at
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A, as it is A who wants to find whether there is a match or not.

3) Scenario 3: Three entities A, B and T are involved.
The public and private keys are at T, and the public key is
sent to A and B. A sends x in encrypted form to B. The
difference calculation is performed at B for each yi and the
results are sent to T who has the private key to decrypt the
result. T informs A whether a match is found or not. Here the
database is stored in encrypted format and the result is known
to A and T. The high communication costs of Scenario 2 are
compensated with the involvement of a trusted third party.

A can be the police agency, whereas B could be the security
agency to whom an organization has outsourced its security
related works. T could be the organization who is trusted by
both the security agency and the police.

The protocols using Paillier encryption and Gentry’s
extended fully homomorphic cryptosystem for Scenarios 2 and
3 are not described in detail due to space constraints.

IV. RESULTS

The implementation [14] consists of two sections: a
character recognition algorithm and a secure data matching
algorithm. The character recognition algorithm was developed,
in spite of numerous techniques already being used for this
purpose, such that it is easily realizable in the encrypted
domain.

A. Character recognition

The character recognition algorithm was implemented in
Python using OpenCV library. Dutch car license plates
consisting of a sequence of six characters composed of
alphabets and digits in a single line are considered. The current
system uses black letters on a yellow background and the font
is assumed to be Gill Sans, one of the commonly used license
plate fonts.

Each character of the plate is predicted twenty-six times, as
there are thirteen block sizes for x-direction and y-direction
each, and the most commonly predicted character is considered
correct. The block sizes, used for prediction, are 5, 10, 15, 20,
25, 30, 40, 45, 50, 60, 75, 90 and 100.

The character recognition scheme works with an overall
accuracy of 98.5%. Out of the 528 characters tested, 520
were identified correctly. The characters B and H were
the most mistaken characters as per the analysis of the
results. But even if one of the characters of the license
plate was wrongly identified, the recognition of the license
plate, as a whole, was considered wrong. From the 88
license plates tested, 81 were identified correctly, yielding
an accuracy of 92% for the recognition of license plates.
Table II shows that our algorithm has rates comparable to
many of the state-of-the-art techniques used for character
recognition. The method described in [15] has success rates
closest to our implementation but it uses an open source
optical character recognition (OCR) engine, ABBYY. In spite
of techniques existing for character identification, this was
developed so as to avoid the use of any classifiers and

non-linear methods. The proposed algorithm uses mainly
arithmetic operations and integer comparisons to recognize
characters. This makes it possible to be implemented in
encrypted domain using homomorphic encryption, if needed,
even though our implementation is in plain domain.

Reference Method Success rate (%)
[10] Statistical feature extraction 85%

[16] Template matching 90.3%

[9] SVM Integration with feature extraction 93.7%

[17] Hierarchical Neural Network(HNN) 95.2%

[16] Genetic algorithm 96.8%

[15] ABBYY OCR software 98.7%

Proposed Feature extraction and minimum difference 98.5%
TABLE II

SUCCESS RATES OF DIFFERENT CHARACTER RECOGNITION ALGORITHMS

B. Secure data matching

We implemented the Paillier encryption for integer matching
in Python and C++. In C++, the Secure Computation Library
(SeComLib) was used for realizing cryptographic schemes
in the encrypted domain. The time taken for Paillier key
generation in C++ was about 0.4 seconds, and for one
encryption it took about 5 microseconds. The extended version
of Gentry’s cryptosystem as described in [4] was implemented
in C++ for data matching purposes. The time required for key
generation in this system was about 1 second, and it took
about 1 millisecond for encrypting one integer. In both cases,
the keys were generated with a key size of 1024 bits. The
concatenated integer was encrypted using the public key, and
the results after computing the difference were decrypted using
the private key.

The comparison of execution time for secure matching in
Scenario 1 using Paillier encryption and extended Gentry’s
system in C++, are represented as a graph of the execution
time vs. database sizes in Fig.2. The execution time depends
on the size of the database: for Paillier encryption it is between
0.12 to 6.75 seconds, whereas for Gentry’s extended system
it is between 1.57 to 88.90 seconds. The time taken by
Gentry’s extended system is more as it is a fully homomorphic
cryptosystem, whereas Paillier is an additively homomorphic
cryptosystem. The fully homomorphic system can handle
multiple operations (addition and multiplication) without
decryption error, but this integer matching implementation
does not make complete use of the fully homomorphic
properties. Even though Paillier performs faster for this
implementation, Gentry’s extended method could be used
for extending the encrypted domain applications performing
processing on images. The extraction of characters can also be
performed in encrypted domain using the fully homomorphic
scheme.

The success rate of matching in encrypted domain using
Paillier encryption and extended Gentry’s fully homomorphic
cryptosystem is 100% and hence the success rate of the whole
system depends on successfully recognizing the license plate
characters.
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Fig. 2. Graph for the execution time taken for secure matching

V. CONCLUSION

With the increasing number of privacy and security threats,
it is important to ensure that there is minimal information
leak. We propose a novel system which includes a character
recognition system for (Dutch) car license plates, which can be
easily translated to the encrypted domain, and a secure integer
matching algorithm using two protocols: Paillier encryption,
and a version of Gentry’s fully homomorphic cryptosystem.
Experimental results for the different scenarios using two
different cryptographic tools show that this line of research
can be easily adopted in real life, eliminating a serious privacy
concern for deploying car plate recognition systems. This work
is one step towards integrating the fields of cryptography and
license plate matching for privacy.
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