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Abstract—A new method for the blind identification of large-
scale finite impulse response (FIR) systems is presented. It ex-
ploits the fact that the system coefficients in large-scale problems
often depend on much fewer parameters than the total number
of entries in the coefficient vectors. We use low-rank models
to compactly represent matricized versions of these compressible
system coefficients. We show that blind system identification (BSI)
then reduces to the computation of a structured tensor decom-
position by using a deterministic tensorization technique called
segmentation on the observed outputs. This careful exploitation
of the low-rank structure enables the unique identification of
both the system coefficients and the inputs. The approach does
not require the input signals to be statistically independent.

I. INTRODUCTION

In blind system identification (BSI) one wishes to identify
the system coefficients of an unknown system that is driven by
unknown inputs resorting only to measured output values [1].
In contrast with instantaneous blind source separation (BSS),
the outputs are convolutive mixtures of the inputs [2]. In
this paper we limit ourselves to the blind identification of
finite impulse response (FIR) systems. BSI occurs in many
applications within signal processing, image processing, and
sensor array processing, see, e.g., [3], [4], [5].

BSS methods have been developed that make some statis-
tical assumption on the sources and then use shifted second-
order or higher-order statistics to tensorize the problem. This
allows one to uniquely determine the mixture and the sources
under some mild conditions. Similar methods have been
developed for BSI, see [1] for an overview. In the BSS case
several deterministic methods have recently been proposed [6],
[7]. The authors have earlier developed a tensor-based method
for large-scale BSS using segmentation as a deterministic
tensorization technique [8], [9]. In this paper, we generalize
the approach to large-scale convolutive BSI.

The key idea is known from compressed sensing [10]: when
considering large-scale signals or big data, it is clear that there
is often an excessive number of entries compared to the actual
amount of information contained in the signal. In other words,
there is some structure in the signal allowing one to model it
much more compactly. Such signals are called compressible
and they can be represented by parsimonious models. A way to
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do this is by using (higher-order) low-rank models [11], [12].
In this paper, we adopt this strategy to the system coefficients
in BSI. Our approach consists of tensorization of the observed
outputs using segmentation and computation of a structured
tensor decomposition of the resulting tensor. By exploiting
the hypothesized compressibility of the system coefficients in
this way, we obtain the first big data variant of BSI, allowing
us to uniquely retrieve the system coefficients and the inputs.

In the remainder of this section we introduce the notation
and basic definitions. We present our method in Section II.
In Section III and IV we discuss numerical experiments and
possible applications, respectively. We conclude in Section V.

A. Notation and definitions

Vectors and matrices, denoted by bold lowercase (e.g., a)
and bold uppercase (e.g., A) letters, respectively, can be
generalized to tensors, denoted by calligraphic letters (e.g.,
A). The (i1,42,...,in)th entry of an Nth-order tensor A €
Kl l2xxIn (K meaning R or C) is denoted by a;,,. iy
The jth column of a matrix A € K>/ is indicated as a;.
A superscript between parentheses denotes an element in a
sequence: {A(”) N_|. The transpose is indicated by e”.

A mode-n vector of a tensor A € K/t *72X*IN ig 3 natural
generalization of the rows and columns of a matrix. The
former is defined by fixing every index except the nth, e.g.,
Q). iy _qingy iy AN Nth-order slice is obtained by fixing
all but NV indices. For example, the second-order slices of a
third-order tensor X € K/*/*K are denoted by X;, X, and
X} and are called the horizontal, lateral, and frontal slices,
respectively. A,y denotes the mode-n unfolding of A and
has the mode-n vectors as its columns, following the ordering
convention in [13]. The vectorization of A is a vector vec(.A)
obtained by mapping each element a;,,...;;, onto vec(A);
with j = 1+ 31 (i, — 1)J, and Ji = [} In.. The Kro-
necker and outer product are denoted by ® and ®, respectively.
They are related through a vectorization: vec (a® b) = b®a.

B. Tensor decompositions

An Nth-order tensor of rank one is defined as the outer
product of N nonzero vectors. The rank of a tensor is defined
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as the minimal number of rank-1 tensors that generate the
tensor as their sum. The mode-n rank of a tensor equals the
rank of its mode-n unfolding. The multilinear rank of an Nth-
order tensor is defined as the N-tuple of these mode-n ranks.

Definition 1. A polyadic decomposition (PD) writes an Nth-
order tensor A € K/1*12XXIN a5 3 sum of R rank-1 terms:

R
A:Zu£1)®u£2)®~--®u£N). (1)

r=1

The columns of the factor matrices U(™) € K/»*% are equal
to the factor vectors u(r”) for 1 < r < R. The PD is called
canonical (CPD) when R is equal to the rank of A.

The CPD is used in several applications within signal
processing, biomedical sciences, and data mining [13], [14].
An important advantage of the CPD for higher-order tensors
is its uniqueness under rather mild conditions. We call the
decomposition essentially unique if it is unique up to trivial
permutation of the rank-1 terms and scaling and counterscaling
of the factors in the same term, see, e.g., [15].

Definition 2. A block term decomposition (BTD) of a third-
order tensor X € KI*/*K jn multilinear rank-(P,, P,,1)
terms for 1 <r < R is a decomposition of the form:

R

X = Z(ATBD ®c,, )
r=1

in which A, € K/*I» and B, € K/*Lr have full column
rank P, and c, is nonzero.

The block terms in (2) are more general than the simple
rank-1 terms of the PD and allow one to capture more complex
phenomena, see e.g., [6], [16], [17]. Other types of BTDs as
well as uniqueness conditions can be found in [6], [18].

II. SEGMENTATION-BASED BLIND SYSTEM
IDENTIFICATION

We present a new tensor-based BSI method, allowing one to
uniquely identify the system coefficients and inputs in (very)
large-scale problems. We will explain that this is possible by
tensorizing the observed outputs which allows us to exploit
the hypothesized compressibility of the system coefficients.
We define the BSI problem, motivate the working hypothe-
sis, derive our method, and discuss selection of parameters,
respectively, in Subsection II-A, 1I-B, II-C, and II-D.

A. Blind system identification

Consider a discrete linear time-invariant system with M
outputs, R inputs, and memory L. The system coefficients
of the filter from input r to output m are denoted by h.,,[(]
for 0 <[ < L. The mth output of FIR system is defined as:

el = 3N sk~ Dbl )
r=11=0

for 1 < k < K. Here s,[k] and n,,[k] denote the rth input and
additive noise on the mth output, respectively. In this paper

we will use the matrix formulation of (3). First define the
matrices H() ¢ KM*E and S ¢ KF*K element-wise as
BB = honr [l] and silk) = sylk—1] for 0 <1 < L, respectively.
Then the output data matrix X € KM*X can be written as:

L
X =Y HNsO, (4)
=0

The goal of BSI is to identify the system coefficients using
only the output data. It is clear that (4) reduces to instantaneous
BSS if L = 0. We ignore noise for notational simplicity in the
derivation of our method. Its influence will be examined later
by means of simulations.

B. Low-rank coefficient vectors

In this paper we assume that a matricized version of the
(r,)th coefficient vector hg) in (4), i.e., the rth column
of H®, admits a low-rank model. We denote such vectors
as low-rank coefficient vectors and we will show that this
working hypothesis enables a unique identification of the
system coefficients and inputs. This assumption is satisfied in
many real-life large-scale applications because in large-scale
situations the coefficients are often compressible, i.e., they can
be described in terms of much fewer parameters than the actual
number of coefficients [11]. The high compressibility of such
low-rank models makes our method applicable in large-scale
BSI problems. The authors adopted a similar strategy to solve
large-scale instantaneous BSS in [8], [9]. We generalize the
strategy here to the convolutive BSI case.

A vector with Vandermonde structure is an example of an
exact rank-1 coefficient vector. For example, take hgw =az™
form = 0,1, ...5. Reshaping this vector into a (2 x 3) matrix:

2 4
a (i :zg 25) =a (i) (1 22 ,24), (5)

clearly illustrates the rank-1 structure. It is known that sums
and products of exponentials and trigonometric terms ad-
mit a low-rank model [6]. For example, a sine is a linear
combination of two (complex conjugated) exponentials and,
hence, admits a rank-2 model. It can be proven that matricized
versions of functions that depend smoothly on m can be well
approximated with a low-rank model [9]. This is illustrated in
Figure 1 for a Gaussian, rational function, and sigmoid.
More formally, reshape coefficient vector hg) in (4) into a
(I x J) matrix H" such that vec(H"”) = h{" with M = I.J.
Our working hypothesis now states that the matricized coeffi-
cient vectors should admit a low-rank representation, hence:

PO
HO =Y alobl = AUBDT ()
p=1

with a') € K and bélr) € K’. This is equivalent to assuming

that hf? ) can be written as a sum of Kronecker products:

Pt
WO =B =Y b al. @)
p=1
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Fig. 1. Consider a Gaussian (left), a rational function (middle), and a sigmoid
(right) evaluated in 100 equidistant samples in [0, 1]. We reshaped the original
functions ( ) into (10 X 10) matrices and subsequently approximated
them by a low-rank matrix. This is done by truncating the singular value
decomposition. The reconstructed functions are obtained by vectorizing the
best rank-1 ( ) and rank-2 (-—--) approximation. It is clear that the
functions can be better approximated by a rank-2 than a rank-1 model. Also
note that the rank-2 model approximately coincides with the original function.

This is clearly interesting for large-scale BSI because of the
possibly large compressions. We only need P,(l)(l +J-1)
parameters instead of M = I.J to model th . For example,
the number of parameters needed in the model is one order of
magnitude lower than the total number of values when I ~ J.

C. Segmentation and decomposition

We show that the BSI problem in (4) can be reformulated
as the computation of a structured tensor decomposition given
low-rank system coefficients of the form in (7). First, each
column of X is reshaped into a (I x J) matrix X, with M =
1J, see Subsection II-D for the choice of I and J. Second, we
stack the matricized columns into the frontal slices of a third-
order tensor X' € K/X/*K 'je  we have that vec(X}) = xy.
Since this operation is linear, the M reshaped observed outputs
are linear combinations of the RL shifted sources sg-l using
the matricized system coefficients Hgl) e KI*7 ie., we have:

R L
x=Y Y HVssl.
r=1[=0
This particular deterministic tensorization technique is denoted
by segmentation, see [8], [9], [19]. Assume that the system
coefficients admit a low-rank representation as in (6), i.e.,

HY =57 al ob!) for 1 <r< Rand 0 <1< L:

X = Z_;Z ( (l)B D), T) ® S(l) (8)

Equation (8) is a BTD in RL multilinear rank-(P{", PV 1)
terms as in (2) with the additional superscript [ due to the
convolution. Hence, if the reshaped system coefficients admit
a low-rank representation, BSI boils down to the computa-
tion of a tensor decomposition. We explicitly note that the
compressibility of the system coefficients has enabled their
blind identification. It is also possible to additionally impose
statistical independence on the inputs when applicable, but
this is out of the scope of this paper. Moreover, note that our
method also works for inputs that are not statistical indepen-
dent or i.i.d. Uniqueness properties of this particular BTD have
been mentioned in Subsection I-B. Finally, the factor matrix
of the third mode, ie., S = [S(® ... S| ¢ KExR(L+D),

has a block Toeplitz structure, see [20], [21] for uniqueness
properties of block Toeplitz constrained decompositions.

The proposed method blindly identifies both the system
coefficients and the inputs by applying segmentation and then
computing a structured decomposition of the resulting tensor,
benefiting from the mild uniqueness properties of (structured)
tensor decompositions. Consequently, we carefully exploit the
compressibility of the system coefficients, enabling BSI in
large-scale applications. Finally, our method is deterministic,
hence, it also works well if only a limited number of samples
are available. Note that if the problem is memoryless (i.e.,
L = 0), BSI boils down to instantaneous BSS, see [8], [9].

D. Parameter selection

We investigate a simple example in order to give some
intuition on how to choose the segmentation parameters [
and J and the number of rank-1 terms Pr(l) in our approach.
Consider the rational function from Figure 1 (middle) but
uniformly discretized in M = 2 samples in [0, 1]. First,
let us reshape the resulting vector into an (I x J) matrix
with I = 27 and J = 2479 for 2 < ¢ < 12 such that
IJ = M. Next, we compute the best rank-P approximation
by truncating the singular value decomposition (SVD) for

= {1,2,3}. Define the normalized number of parameters
as follows: M = P(I + J — 1)/M. Figure 2 plots M as a
function of the relative error € of the rank-P model.

There is a clear trade-off between compression and accu-
racy. Hence, what is considered a “good” choice of parameters
depends on the needs in a particular application [9]. Note that
segmentation is not symmetric in the modes it creates: for a
fixed rank, I < J is a better choice than I > J. (Analogous,
note that the column and row in (5) have a different Vander-
monde generator.) In this example, the compression can be
increased by taking I ~ J and choosing P not too large. The
accuracy on the other hand can be improved by changing [
and J and/or increasing P. We indicate an example in Figure 2
with an arrow. First, we increase g from 3 to 5, obtaining a
slightly more square matrix which improves the compression
but reduces the accuracy (for the same rank value). Next, we
increase the rank from 2 to 3, greatly improving the accuracy
and only slightly reducing the compression. Overall we have
both a better compression and accuracy.

In practice, one can start with a trial-and-error approach to
find some reasonable segmentation parameters and overesti-
mate P; the latter is not so critical anyway [9]. Subsequently,
one can perform a similar analysis as here with ranks smaller
than P and refine the choice of the parameters I, J, and P.

III. NUMERICAL EXPERIMENTS

We illustrate our method with a simple proof-of-concept
and an inspection of the influence on accuracy when explicitly
imposing block Toeplitz structure on the decomposition in (8).
We use Gaussian additive noise unless stated otherwise.

The system coefficients as well as the inputs can only be de-
termined up to scaling and permutation, which are the standard
indeterminacies in BSI. Hence, we first optimally scale and
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Fig. 2. Normalized number of parameters M = P(I+J—1)/M as a function
of the relative error (dB) of the rank-P approximation of a matricized version
of the rational function depicted in Figure 1 (middle) discretized in M = 214
equidistant samples in [0, 1]. First, the resulting vector is reshaped into an (I X
J) matrix with T = 29 and J = 2'~9 such that I.J = M. Subsequently, the
best approximation is obtained by truncating the singular value decomposition
for P =1 (%), 2 (—®—), and 3 (—®—). The parameter 2 < ¢ < 12
increases from left to right on each curve. The arrow indicates a beneficial
change of parameters, improving both the accuracy and compression.

permute them with respect to the true ones in order to compute
the relative error. We then define the relative error €o as the
relative difference in Frobenius norm ||A — Al|g/||A||p with
A an optimally scaled and permuted estimate for the matrix A.
The CPD and the BTD in multilinear rank-(L,, L,, 1) terms
are computed using cpd_nls and 111_n1ls from Tensorlab,
respectively, see [18], [22], [23]. We use a generalized eigen-
value decomposition as initialization for the latter. The block
Toeplitz constrained version can be easily implemented using
the structured data fusion (SDF) framework in Tensorlab [24].

In a first experiment we consider an FIR system with M =
2500 outputs, R = 2 i.i.d. zero-mean unit-variance Gaussian
random inputs of sample size KX = 100, and system order
L = 2. We use the following low-rank coefficient vectors:
R (€) = 0.1e%, AV (€) = e S cos(6m€), by (€) = e %,
and hgo) = sin(127¢) evaluated in M equidistant samples in
[0,1]. We use a rank-1 (Pl(o) = P2(0) = 1) and rank-2 (Pl(l) =
P2(1) = 2) approximation for the matricized exponential and
sinusoidal coefficient vectors, respectively, with I = J = 50.
Hence, we decompose the (50 x 50 x 20) segmented version
of the observed data matrix X in a sum of multilinear rank-
(Pﬁl),Rfl),l) terms as in (8) using 111_nls. We do not
impose block Toeplitz structure on the decomposition. Note
that one only needs Pﬁl) (I +J—1) values to approximate the
(r,1)th coefficient vector, i.e., only 99 or 198 values instead of
2500 depending on the rank. This results in a compression of
1 —P,El)(I—i—J— 1)/M = 96.04% or 92.08%, respectively. See
Figure 3 for an illustration of the original and reconstructed
coefficient vectors in both the noiseless and noisy case.

We now compare the accuracy of the results when extracted
from the unstructured versus the block Toeplitz constrained
decomposition. Consider a FIR system with M = 2500 out-
puts and system order L = 2. We have R = 2 (deterministic)
complex exponential inputs: s.[k] = e2™* with K = 20
equidistant samples in [0, 1]. The low-rank coefficient vectors
are constructed as the vectorization of rank-1 (Pr(l) =1Vrl)
matrices using (7) with zero-mean unit-variance Gaussian
random factor vectors of size I = J = 50. Consequently

1 ~
AN ~
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0 0.5 1
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_]_ _ |
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Fig. 3. Original (top) and reconstructed system coefficients in the noiseless
(middle) and noisy (bottom) case (15 dB SNR) for the first (left) and second
(right) input and both shifts ( =0 (- --)and [ =1 ( )). Note a perfect
and excellent reconstruction for the noiseless and noisy case, respectively.
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Fig. 4. Median across 100 experiments of the relative error (dB) on the
coefficient vectors (left) and the inputs (right) as a function of SNR (dB). The
relative errors are shown for the results extracted from the unstructured (——)
decomposition and the block Toeplitz constrained (—®—) decomposition.

we also use a second-order rank-1 approximation for all
coefficient vectors with I = J = 50. Hence, the unstructured
decomposition is simply a CPD as in (1) which can be
computed with cpd_n1ls. We use the result of the latter as the
initialization of the block Toeplitz constrained decomposition
algorithm which is often a good initialization strategy. We
report the relative error on the coefficient vectors egy and the
inputs eg in Figure 4. Note that the results are very accurate
compared to the SNR. It is clear that eg improves by imposing
the block Toeplitz structure. Even for negative SNR, a good
accuracy is obtained, thanks to the exploitation of the low-
rank structure. On the other hand, the relative error on the
coefficients epy does not improve significantly. Finally, note
that eg is lower than egy because this is the shorter factor in
the decomposition, i.e., K < I, J.

IV. APPLICATIONS

There is a trend in biomedical applications to higher den-
sity sensor grids. Examples include surface electromyogram
(sEMG) and wireless body area networks (WBANs) based
on electroencephalography (EEG) and electrocorticography
(ECoG) [3], [25], [26]. BSS and BSI are typical problems in
these applications [9]. For example, one of the first models
proposed to separate the action potentials of the muscle’s
motor units in high-density SEMG (HD-sEMG) was BSS. The
BSI model of (4) is, however, closer to the real phenomenon.
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In array processing and telecommunications, FIR models
can be used to model uniform linear arrays (ULAs) and
rectangular arrays (URAs) with far-field sources that emit
narrowband signals [27]. In this case the coefficient vectors
have a Vandermonde structure and thus have rank-1 structure,
as shown in (5). In the near-field and/or multipath case
the matricized system coefficients typically have a low-rank
structure [9]. Here as well we see an increase in the number
of antennas. This is also known as massive MIMO [28].

V. CONCLUSION

We presented the first BSI method that can be used for
(very) large-scale FIR systems. It exploits the hypothesized
compressibility of system coefficients in large-scale problems
by using segmentation on the observed outputs. Computation
of a structured decomposition of the resulting tensor allowed
us to uniquely identify both the system coefficients and the
inputs. Statistical independence of the inputs is not needed.
Actually only a few samples are needed because the method
is deterministic. We investigated parameter selection and con-
cluded the paper with numerical experiments and applications.

In this paper we focused on second-order segmentation, i.e.,
matricization of the coefficient vectors. This can be extended
to higher-order segmentation as in [8], [9] for instantaneous
BSS. Also, a more extensive inspection of the block Toeplitz
structure and its influence on the uniqueness properties and
accuracy is needed. In a follow-up paper we will present more
simulations and validate the method on real-life applications.
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