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Abstract—The aim of this paper is to propose a least mean
squares (LMS) strategy for adaptive estimation of signals defined
over graphs. Assuming the graph signal to be band-limited, over
a known bandwidth, the method enables reconstruction, with
guaranteed performance in terms of mean-square error, and
tracking from a limited number of observations sampled over
a subset of vertices. A detailed mean square analysis provides
the performance of the proposed method, and leads to several
insights for designing useful sampling strategies for graph signals.
Numerical results validate our theoretical findings, and illustrate
the advantages achieved by the proposed strategy for online
estimation of band-limited graph signals.

Index Terms—Least mean squares estimation, graph signal
processing, sampling on graphs.

I. INTRODUCTION

Recent years have witnessed a large interest in developing

novel modeling and processing tools for the analysis of signals

defined over a graph, or graph signals for short [1]–[3].

Graph signal processing (GSP) extends classical discrete-time

signal processing to signals defined over a discrete domain

having a very general structure, represented by a graph, which

subsumes discrete-time as a very simple case. A central role

in GSP is played by spectral analysis of graph signals, which

is based on the so called Graph Fourier Transform (GFT).

Alternative definitions of GFT have been proposed, see, e.g.,

[4], [1], [2]. Two basic approaches are available, proposing the

projection of the graph signal onto the eigenvectors of either

the graph Laplacian, see, e.g., [4], [1], or of the adjacency

matrix, see, e.g. [2]. One of the basic problems in GSP is

the development of a graph sampling theory, whose aim is to

recover a band-limited (or approximately band-limited) graph

signal from a subset of its samples. A seminal contribution was

given in [4], later extended in [5] and, very recently, in [6], [7],

[8], [9]. Dealing with graph signals, the recovery problem may

easily become ill-conditioned, depending on the location of the

samples. Hence, for any given number of samples enabling

signal recovery, the identification of the sampling set plays

a key role in the conditioning of the recovery problem. It is

then particularly important to devise strategies to optimize the

selection of the sampling set. Alternative signal reconstruction

methods have been proposed, either iterative as in [10], [8],

or single shot, as in [6], [7]. Frame-based approaches to

reconstruct signals from subsets of samples have also been
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proposed in [4], [8], [7]. Finally, in [11], the authors proposed

signal recovery methods aimed to recover graph signals that

are assumed to be smooth with respect to the underlying graph,

from sampled, noisy, missing, or corrupted measurements.

The goal of this paper is to propose LMS strategies for

the adaptive estimation of signals defined on graphs. To the

best of our knowledge, this is the first attempt to merge the

well established theory of adaptive filtering [12] with the

emerging field of signal processing on graphs. The proposed

method hinges on the graph structure describing the observed

signal and, under a band-limited assumption, it enables online

reconstruction from a limited number of observations taken

over a subset of vertices. A detailed mean square analysis

illustrates the role of the sampling strategy on the reconstruc-

tion capability, stability, and mean-square performance of the

proposed algorithm. Based on these results, we also derive

adaptive sampling strategies for LMS estimation of graph

signals. Numerical results confirm the theoretical findings, and

assess the performance of the proposed strategies.

II. GRAPH SIGNAL PROCESSING TOOLS

We consider a graph G = (V , E) consisting of a set of

N nodes V = {1, 2, ..., N}, along with a set of weighted

edges E = {aij}i,j∈V , such that aij > 0, if there is a link

from node j to node i, or aij = 0, otherwise. The adjacency

matrix A of a graph is the collection of all the weights

aij , i, j = 1, . . . , N . The degree of node i is ki :=
∑N

j=1 aij .

The degree matrix K is a diagonal matrix having the node

degrees on its diagonal. The Laplacian matrix is defined as

L = K − A. If the graph is undirected, the Laplacian

matrix is symmetric and positive semi-definite, and admits the

eigendecomposition L = UΛUH , where U collects all the

eigenvectors of L in its columns, whereas Λ is a diagonal

matrix containing the eigenvalues of L. It is well known from

spectral graph theory that the eigenvectors of L are well suited

for representing clusters, since they minimize the ℓ2 norm

graph total variation.

A signal x over a graph G is defined as a mapping from the

vertex set to the set of complex numbers, i.e. x : V → C. In

many applications, the signal x admits a compact representa-

tion, i.e., it can be expressed as:

x = Us (1)

where s is exactly (or approximately) sparse. As an example,

in all cases where the graph signal exhibits clustering features,

i.e. it is a smooth function within each cluster, but it is
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allowed to vary arbitrarily from one cluster to the other, the

representation in (1) is compact, i.e. the only nonzero (or

approximately nonzero) entries of s are the ones associated

to the clusters. The GFT s of a signal x is defined as the

projection onto the set of vectors U = {ui}i=1,...,N [1], i.e.

GFT: s = UH
x. (2)

The GFT has been defined in alternative ways, see, e.g.,

[1], [2], [6]. In this paper, we basically follow the approach

based on the Laplacian matrix, assuming an undirected graph

structure, but the theory could be extended to handle directed

graphs with minor modifications. From (1) and (2), if the

signal x exhibits a clustering behavior, in the sense specified

above, the GFT is the way to recover the sparse vector s.

Given a subset of vertices S ⊆ V , we define a vertex-

limiting operator as the diagonal matrix

DS = diag{1S}, (3)

where 1S is the set indicator vector, whose i-th entry is equal

to one, if i ∈ S , or zero otherwise. Similarly, given a subset of

frequency indices F ⊆ V, we introduce the filtering operator

BF = UΣFU
H , (4)

where ΣF is a diagonal matrix defined as ΣF = diag{1F}. It

is immediate to check that both matrices DS and BF are self-

adjoint and idempotent, and then they represent orthogonal

projectors. The space BF of all signals whose GFT is exactly

supported on the set F is known as the Paley-Wiener space

for the set F [4]. In the rest of the paper, whenever there will

be no ambiguities in the specification of the sets, we will drop

the subscripts referring to the sets. Finally, given a set S, we

denote its complement set as S , such that V = S ∪ S and

S ∩S = ∅. Thus, we define the vertex-projector onto S as D.

Exploiting the localization operators in (3) and (4), we say

that a vector x is perfectly localized over the subset S ⊆ V if

Dx = x, (5)

with D defined as in (3). Similarly, a vector x is perfectly

localized over the frequency set F if

Bx = x, (6)

with B given in (4). The localization properties of graph

signals were studied in [7] to derive the fundamental trade-

off between the localization of a signal in the graph and on its

dual domain. An interesting consequence of that theory is that,

differently from continuous-time signals, a graph signal can be

perfectly localized in both vertex and frequency domains.

III. LMS ESTIMATION OF GRAPH SIGNALS

Let us consider a signal x0 ∈ C
N defined over the graph

G = (V , E). The signal is assumed to be perfectly band-

limited, i.e. its spectral content is different from zero only

on a limited set of frequencies F . Let us consider partial

observations of signal x0, i.e. observations over only a subset

of nodes. Denoting with S the sampling set (observation

subset), the observed signal at time n can be expressed as:

y[n] =D (x0 + v[n]) = DBx0 +Dv[n] (7)

where D is the vertex-limiting operator defined in (3), which

takes nonzero values only in the set S, and v[n] is a zero-

mean, additive noise with covariance matrix Cv . The second

equality in (7) comes from the bandlimited assumption, i.e.

Bx0 = x0, with B denoting the operator in (4) that projects

onto the (known) frequency set F . The estimation task consists

in recovering the band-limited graph signal x0 from the noisy,

streaming, and partial observations y[n] in (7). Following an

LMS approach [12], the optimal estimate for x0 can be found

as the vector that solves the following optimization problem:

min
x

E ‖y[n]−DBx‖2 (8)

s.t. Bx = x

where E(·) denotes the expectation operator. The solution

of problem (8) minimizes the mean-squared error and has a

bandwidth limited to the frequency set F . A typical LMS-

type solution proceeds to optimize (8) by means of a steepest-

descent procedure, relying only on instantaneous information.

Thus, letting x[n] be the current estimate of vector x0, the

LMS algorithm for graph signals evolves as illustrated in

Algorithm 1, where µ > 0 is a (sufficiently small) step-

size, and we have exploited the fact that D is an idempotent

operator, and Bx[n] = x[n] (i.e., x[n] is band-limited) for

all n. Algorithm 1 starts from an initial signal that belongs

Algorithm 1: LMS algorithm for graph signals

Start with x[0] ∈ BF chosen at random. Given a sufficiently

small step-size µ > 0, for each time n > 0, repeat:

x[n+ 1] = x[n] + µBD (y[n]− x[n]) (9)

to the Paley-Wiener space for the set F , and then evolves

implementing an alternating orthogonal projection onto the

vertex set S (through D) and the frequency set F (through B).

The properties of the LMS recursion in (9) crucially depend

on the sampling set S, i.e., on the operator D [cf. (3)]. Thus,

in the sequel we will show how the choice of the operator D

affects the reconstruction capability, the mean-square stability,

and the steady-state performance of Algorithm 1.

A. Reconstruction Properties

The LMS algorithm in (9) is a stochastic approximation

method for the solution of problem (8), which enables con-

vergence in the mean-sense to the true vector x0, while

guaranteing a bounded mean-square error (as we will see

in the sequel). However, since the existence of a unique

band-limited solution for problem (9) depends on the adopted

sampling strategy, the first natural question to address is:

What conditions must be satisfied by the sampling operator

D to guarantee reconstruction of signal x0 from the selected

samples? The answer is given in the following theorem, which

gives a necessary and sufficient condition to reconstruct graph

signals from partial observations using Algorithm 1.

Theorem 1: Problem (8) admits a unique solution, i.e. any

band-limited signal x0 can be reconstructed from its samples
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taken in the set S , if and only if
∥∥DB

∥∥
2
< 1, (10)

i.e. if the matrix BDB does not have any eigenvector that is

perfectly localized on S and bandlimited on F .

Proof. See [13].

A necessary condition that enables reconstruction, i.e. the

non-existence of a non-trivial vector x satisfying DBx = 0,

is that |S| ≥ |F|. However, this condition is not sufficient,

because matrix DB in (7) may loose rank, or easily become

ill-conditioned, depending on the graph topology and sampling

strategy. This suggests that the location of samples plays a key

role in the performance of Algorithm 1.

B. Mean-Square Analysis

In this section, we study the mean-square behavior of the

proposed LMS strategy, illustrating how the sampling operator

D affects its stability and steady-state performance. From now

on, we view the estimates x[n] as realizations of a random

process and analyze the performance of the LMS algorithm in

terms of its mean-square behavior. Let x̃[n] = x[n] − x0 be

the error vector at time n. Subtracting x0 from the left and

right hand sides of (9), using (7) and Bx̃[n] = x̃[n], we get:

x̃[n+ 1] = (I− µBDB) x̃[n] + µBDv[n]. (11)

Letting s̃[n] be the GFT of x̃[n], we will analyze the mean-

square behavior of the error recursion (11) only on the support

of s̃[n], i.e. ŝ[n] = {s̃i[n], i ∈ F} ∈ C|F|. Thus, letting UF ∈
CN×|F| be the matrix having as columns the eigenvectors of

the Laplacian matrix associated to the frequency indices F ,

and multiplying each side of (11) by UH
F , the error recursion

(11) can be rewritten in compact form as:

ŝ[n+ 1] = (I− µUH
FDUF ) ŝ[n] + µUH

FDv[n]. (12)

Using energy conservation arguments [14], we consider a

general weighted squared error sequence ŝ[n]HΦŝ[n], where

Φ ∈ C|F|×|F| is any Hermitian nonnegative-definite matrix

that we are free to choose. In the sequel, it will be clear the

role played by a proper selection of the matrix Φ. Then, from

(12) we can establish the following variance relation:

E‖ŝ[n+ 1]‖2Φ = E‖ŝ[n]‖2Φ′ + µ2
E{v[n]HDUFΦUH

FDv[n]}

= E‖ŝ[n]‖2Φ′ + µ2 Tr(ΦUH
FDCvDUF ) (13)

where Tr(·) denotes the trace operator, and

Φ′ =
(
I− µUH

FDUF

)
Φ
(
I− µUH

FDUF

)
. (14)

Let ϕ = vec(Φ) and ϕ
′ = vec(Φ′), where the nota-

tion vec(·) stacks the columns of Φ on top of each other

and vec−1(·) is the inverse operation. We will use inter-

changeably the notation ‖ŝ‖2Φ and ‖ŝ‖2
ϕ

to denote the same

quantity ŝ
H
Φŝ. Exploiting the Kronecker product property

vec(XΦY) = (YH ⊗ X)vec(Φ), and the trace property

Tr(ΦX) = vec(XH)Tvec(Φ), in the relation (13), we obtain:

E‖ŝ[n+ 1]‖2
ϕ
= E‖ŝ[n]‖2Qϕ

+ µ2vec(G)Tϕ (15)

where

G = UH
FDCvDUF (16)

Q = (I− µUH
FDUF)⊗ (I− µUH

FDUF). (17)

The following theorem guarantees the asymptotic mean-square

stability of the LMS algorithm in (9).

Theorem 2: Assume model (7) holds. Then, for any bounded

initial condition, the LMS strategy (9) asymptotically con-

verges in the mean-square error sense if the sampling operator

D and the step-size µ are chosen to satisfy (10) and

0 < µ <
2

λmax

(
UH

FDUF

) , (18)

where λmax(A) is the maximum eigenvalue of matrix A.

Proof. See [13].

C. Steady-State Performance

Taking the limit of (15) as n → ∞ (assuming condition

(18) holds true), we obtain:

lim
n→∞

E‖ŝ[n]‖2(I−Q)ϕ = µ2vec(G)Tϕ. (19)

Expression (19) is a useful result: it allows us to derive several

performance metrics through the proper selection of the free

weighting parameter ϕ (or Φ). For instance, let us assume that

one wants to evaluate the steady-state mean square deviation

(MSD) of the LMS strategy (9). Thus, selecting ϕ = (I −
Q)−1vec(I) in (19), we obtain

MSD = lim
n→∞

E‖x̃[n]‖2 = lim
n→∞

E‖ŝ[n]‖2

= µ2vec(G)T (I−Q)−1vec(I). (20)

If instead one is interested in evaluating the mean square devi-

ation obtained by the LMS algorithm (9) when reconstructing

the value of the signal associated to k-th vertex of the graph,

selecting ϕ = (I−Q)−1vec(UH
FEkUF ) in (19), we obtain

MSDk = lim
n→∞

E‖x̃[n]‖2Ek
= lim

n→∞
E‖ŝ[n]‖2

UH

F
EkUF

= µ2vec(G)T (I−Q)−1vec(UH
FEkUF ), (21)

where Ek = diag{ek}, with ek ∈ RN denoting the k-th

canonical vector. In the sequel, we will confirm the validity

of these theoretical expressions by comparing them with

numerical simulations.

D. Sampling Strategies

The properties of the proposed LMS algorithm in (9)

strongly depend on the choice of the sampling set S, i.e. on the

vertex limiting operator D. Indeed, building on the previous

analysis, it is clear that the sampling strategy must be carefully

designed in order to: a) enable reconstruction of the signal; b)

guarantee stability of the algorithm; and c) impose a desired

mean-square error at convergence. To select the best sampling

strategy, one should optimize some performance criterion, e.g.

the MSD in (20), with respect to the sampling set S. However,

since this formulation translates inevitably into a combinatorial

problem, whose solution in general requires an exhaustive
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search over all the possible combinations, the complexity of

such procedure becomes intractable also for graph signals of

moderate dimensions. Thus, in the sequel we will provide

some efficient, albeit sub-optimal, greedy algorithms to tackle

the problem of selecting the sampling set.

Greedy Selection - Minimum MSD: This strategy aims at

minimizing the MSD in (20) via a greedy approach: the

method iteratively selects the samples from the graph that lead

to the largest reduction in terms of MSD. Since the proposed

greedy approach starts from an initially empty sampling set,

when |S| < |F|, matrix I − Q in (20) is inevitably rank

deficient. Then, in this case, the criterion builds on the pseudo-

inverse of the matrix I − Q in (20), denoted by (I − Q)†,

which coincides with the inverse as soon as |S| ≥ |F|.
The resulting algorithm is summarized in the table entitled

“Sampling strategy 1”, where we made explicit the dependence

of matrices G and Q on the sampling operator D. In the

sequel, we will refer to this method as the Min-MSD strategy.

Sampling strategy 1: Minimization of MSD

Input Data : M , the number of samples.

Output Data : S, the sampling set.

Function : initialize S ≡ ∅
while |S| < M

s = argmin
j

vec(G(DS∪{j}))
T (I−Q(DS∪{j}))

†vec(I);

S ← S ∪ {s};
end

Greedy Selection - Maximum

∣∣∣UH
FDUF

∣∣∣
+

: In this case, the

strategy aims at maximizing the volume of the parallelepiped

build with the selected rows of matrix UF . The algorithm

starts including the row with the largest norm in UF , and

then it adds, iteratively, the rows having the largest norm

and, at the same time, are as orthogonal as possible to the

vectors already in S . The rationale underlying this strategy is

to design a well suited basis for the graph signal that we want

to estimate. This criterion coincides with the maximization

of the the pseudo determinant of the matrix UH
FDUF (i.e.

the product of all nonzero eigenvalues), which is denoted by∣∣∣UH
FDUF

∣∣∣
+

. The resulting algorithm is summarized in the

table entitled “Sampling strategy 2”. We will refer to this

method as the Max-Det sampling strategy.

Sampling strategy 2: Maximization of

∣∣∣UH
FDUF

∣∣∣
+

Input Data : M , the number of samples.

Output Data : S, the sampling set.

Function : initialize S ≡ ∅
while |S| < M

s = argmax
j

∣∣∣UH
FDS∪{j}UF

∣∣∣
+

;

S ← S ∪ {s};
end

In the sequel, we will illustrate some numerical results

aimed at comparing the performance achieved by the proposed

LMS algorithm using the aforementioned sampling strategies.
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Fig. 2: Comparison between theoretical MSD in (19) and

simulation results, at each vertex of the graph.

IV. NUMERICAL RESULTS

Let us consider the graph signal shown in Fig. 1 and

composed of N = 50 nodes, where the color of each vertex

denotes the value of the signal associated to it. The signal

has a spectral content limited to the first ten eigenvectors of

the Laplacian matrix of the graph in Fig. 1, i.e. |F| = 10.

The observation noise in (7) is zero-mean, Gaussian, with

a diagonal covariance matrix, where each element is chosen

uniformly random between 0 and 0.01. An example of graph

sampling, obtained selecting |S| = 10 vertexes using the Max-

Det sampling strategy, is also illustrated in Fig. 1, where the

sampled vertexes have thicker marker edge. To validate the

theoretical results in (21), in Fig. 2 we report the behavior

of the theoretical MSD values achieved at each vertex of

the graph, comparing them with simulation results, obtained

averaging over 200 independent simulations and 100 samples

of squared error after convergence of the algorithm. The step-

size is chosen equal to µ = 0.5 and, together with the selected

sampling strategy D, they satisfy the reconstruction and sta-

bility conditions in (10) and (18). As we can notice from Fig.

2, the theoretical predictions match well the simulation results.

It is fundamental to assess the performance of the LMS

algorithm in (9) with respect to the adopted sampling set S. As

a first example, using the Max-Det sampling strategy, in Fig.

3 we report the transient behavior of the MSD, considering

different number of samples taken from the graph, i.e. different

cardinalities |S| of the sampling set. The results are averaged

over 200 independent simulations, and the step-sizes are tuned

in order to have the same steady-state MSD for each value

of |S|. As expected, from Fig. 3 we notice how the learning
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Fig. 3: Transient MSD, for different number of samples |S|.
Increasing the number of samples, the learning rate improves.

rate of the algorithm improves by increasing the number of

samples. Finally, in Fig. 4 we illustrate the steady-state MSD

of the LMS algorithm in (9) comparing the performance

obtained by three different sampling strategies, namely: a)

the Min-MSD strategy; b) the Max-Det strategy; and c) the

random sampling strategy, which simply picks at random |S|
nodes. We consider the same parameter setting of the previous

simulation. The results are averaged over 200 independent

simulations. As we can notice from Fig. 4, the LMS algorithm

with random sampling can perform quite poorly, especially at

low number of samples. This poor result of random sampling

emphasizes that, when sampling a graph signal, what matters is

not only the number of samples, but also (and most important)

where the samples are taken. We also notice from Fig. 4

that the Max-det strategy performs well also at low number

of samples (|S| = 10 is the minimum number of samples

that allows signal reconstruction), where the other methods

fail. It is indeed remarkable that, for low number of samples,

Max-Det outperforms also Min-MSD, even if the performance

metric is MSD. There is no contradiction here because we

need to remember that all the proposed methods are greedy

strategies, so that there is no claim of optimality in all of them.

However, as the number of samples increases, the Min-MSD

strategy outperforms all other methods. This is a consequence

of the fact that Min-MSD exploits information about the

spatial distribution of the observation noise (cf. (20)). Thus,

increasing the number of samples, this strategy avoids to select

the most noisy vertexes of the graph, thus improving the

overall performance of the LMS algorithm in (9). This analysis

suggests that an optimal design of the sampling strategy for

graph signals should take into account processing complexity

(in terms of number of samples), prior knowledge (e.g., graph

structure, noise distribution), and achievable performance.

V. CONCLUSIONS

In this paper we have proposed LMS strategies for online

estimation of signals defined over graphs. The proposed strate-

gies are able to exploit the underlying structure of the graph

signal, which can be reconstructed from a limited number of

observations properly sampled from a subset of vertexes, under
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Fig. 4: Steady-state MSD versus number of samples, for

different sampling strategies.

a band-limited assumption. A detailed mean square analysis

illustrates the deep connection between sampling strategy

and the properties of the proposed LMS algorithm in terms

of reconstruction capability, stability, and mean-square error

performance. From this analysis, some sampling strategies for

adaptive estimation of graph signals are also derived. Several

numerical simulations confirm the theoretical findings, and

illustrate the potential advantages achieved by these strategies

for online estimation of band-limited graph signals.
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