2016 24th European Signal Processing Conference (EUSIPCO)

Rapid Digital Architecture Design of
Orthogonal Matching Pursuit

Benjamin Knoop, Jochen Rust, Sebastian Schmale, Dagmar Peters-Drolshagen, Steffen Paul
Institute of Electrodynamics and Microelectronics (ITEM.me), University of Bremen
Otto-Hahn-Allee 1, 28357 Bremen, Germany
Email: {knoop, rust, schmale, peters, paul } @me.uni-bremen.de

Abstract—Orthogonal Matching Pursuit (OMP) is a greedy
algorithm well-known for its applications to Compressed Sensing.
For this work it serves as a toy problem of a rapid digital design
flow based on high-level synthesis (HLS). HLS facilitates extensive
design space exploration in connection with a data type-agnostic
programming methodology. Nonetheless, some algorithmic trans-
formations are needed to obtain optimised digital architectures.
OMP contains a least squares orthogonalisation step, yet its
iterative selection strategy makes rank-1 updating possible. We
furthermore propose to compute complex mathematical oper-
ations, e.g. the needed reciprocal square root operation, with
the help of the logarithmic number system to optimise HLS
results. Our results can compete with prior works in terms of
latency and resource utilisation. Additionally and to the best
of our knowledge, we can report on the first complex-valued
digital architecture of OMP, which is able to recover a vector of
length 128 with 5 non-zero elements in 17.1 ps.

I. INTRODUCTION

The design of faster and bandwidth-efficient communication
systems goes hand in hand with the development of more
than ever sophisticated signal processing algorithms. This has
direct impact on the quantity of needed hardware resources
in terms of adders, multipliers, etc. for practical implementa-
tions. Though the technological evolution scales quite well
to accommodate this growth in complexity, the engineer’s
design capabilities do not. This is often called the productivity
design gap. In [1] it was shown that this is caused by the
structure of an algorithm itself, which can be measured in
terms of what the authors call “design entropy”. The more
irregular a hardware architecture is, the higher is the design
entropy. Modern complex signal processing algorithms with
irregular data paths and much control overhead, e.g. caused
by loops or if-else branches, are of high entropy and more
difficult to design. To overcome the design productivity gap,
it was proposed to introduce further tools into the design
flow which are capable of automating certain implementation
aspects and especially shift the design perspective to a higher,
more abstract level [1]. In other words, the design of hardware
architectures must be elevated to the algorithmic layer away
from traditional hardware description languages (HDL) and
the register-transfer level (RTL).

One answer to this is high-level synthesis (HLS) [2], [3].
As input, HLS takes an algorithmic description in a high-level
language like structured C/C++ or SystemC and synthesises
as output an RTL description in an HDL. Usually, this is
accompanied by further design decisions (e.g. the amount of

978-0-9928-6265-7/16/$31.00 ©2016 |IEEE

parallelisation or pipelining) and boundary conditions (e.g.
resource utilisation). Compared to the otherwise needed design
time, HLS accelerates digital architecture design. Another
major advantage of HLS is the possibility to explore the design
space without much effort, since problem sizes and even data
types are configurable parameters.

The contribution of this paper is threefold. First, we will
show that it is possible to implement even complex, hetero-
geneous algorithms, based on the rapid digital architecture
design paradigm of HLS using the example of Orthogonal
Matching Pursuit (OMP), [4]. OMP is a greedy algorithm
best known for its applications to Compressed Sensing (CS).
There is also a recent application to sparse multi-user channel
estimation in a wireless communications network [5], which
can only be facilitated if the output architecture allows for
real-time operation. OMP makes frequent use of linear algebra
operations and is hence parallelisable to some extent but
contains a lot of control structure as well. Therefore, we view
OMP as a fitting subject of study in the context of HLS.

As the second contribution, we propose to solve the least
squares (LS) step of OMP with rank-1 updates to the modified
Gram-Schmidt QR matrix decomposition (QRD). This builds
upon ideas from the literature, as we will discuss in the
following section, but takes it a step further by calculating the
pseudoinverse with rank-1 updates as well. The results of [6]
are integrated in our design to efficiently compute the inverse
vector norm using the logarithmic number system (LNS).

And, to the best of our knowledge, we propose the first
VLSI design of OMP for complex numbers. This is the third
contribution of this paper which emphasises the power of HLS
if combined with a data type-agnostic design methodology.

II. ORTHOGONAL MATCHING PURSUIT

Orthogonal Matching Pursuit (OMP) was introduced by
Tropp and Gilbert in 2007 as a greedy algorithm for the recov-
ery of a sparse vector from random linear measurements [4].
It is based on the CS system model

b= Ax, (1)

where A is the M x N random CS measurement matrix, b the
measurement vector and x the to be recovered sparse vector.
x is said to be k-sparse if it only contains k£ non-zero entries
or in other words the £y-pseudo norm is ||x||o = k. Hence, the
problem size can easily be stated as a triplet (M, N, k), where

1857

2016 24th European Signal Processing Conference (EUSIPCO)

1: function OMP(b, A k)
2 r—b;x<0, A0 > initialisation
3 fort=1,....k do

4: A+ argmaxy [(Ag,)| > correlation
5: A~ AU{N} > index set
6 XA ¢ argming, ||b — Axxa|l, > least squares
7 r< b— Axxp > residual
8 end for

9: return x

10: end function

Fig. 1: Pseudocode of Orthogonal Matching Pursuit (OMP)
according to Tropp and Gilbert [4].

k < M < N. Note, that Eq. (1) can be either real-valued or
complex-valued. A must fulfil certain conditions, but these
are with high probability satisfied when its entries are drawn
from a random process, e.g. Gaussian. Then, OMP can reliably
recover x with O(kIn N) random linear measurements [4].

The algorithm is re-stated as pseudocode in Fig. 1. It
recovers a k-sparse vector iteratively in k iterations, with ¢
as the loop counter. The loop body mainly consists of three
computational steps or kernels, each dependent on the previous
one: (i) correlation and selection, (ii) LS orthogonalisation and
(iii) residual update. First, one column of A is selected that
is most strongly correlated with the residual r and the set A
is augmented by the index A\ of the chosen column (lines 4
and 5). A is the index set of all indices that have been chosen
so far and identifies the non-zero locations (support set), also
called atoms, of the sparse result vector x. Next, a LS step
is computed in line 6 on a reduced system of equations. Az
is a M x t matrix composed of all selected columns, and
x5 denotes a vector of length ¢. An equivalent formulation
of line 6 would be x, = AJb, whereby (-)* denotes the
Moore-Penrose pseudoinverse. The last step within the loop is
the update of the residual.

III. RELATED WORK

There has already been published a substantial body of
research on the digital hardware design of OMP [7]-[13].
Although there are some ASIC designs, most of the literature
focuses on FPGAs as target platform. A comparative overview
is given in Tab. I, including some selected results of ours.

Most importantly, a couple of works [7], [8], [10], [12]
implement the OMP substantially different compared to the
original one published by Tropp and Gilbert [4]. We will
refer to this as the two-stage variant of OMP (see Tab. I).
According to the classical OMP, a LS step is to be solved
within each iteration of the embracing loop. This ensures
orthogonality between A and the updated residual r (Fig. 1,
line 7). Septimus and Steinberg proposed in [7] to partition the
OMP into two consecutive stages, of which the first iteratively
selects the sparse support and only the second performs a
LS solution over that support. Instead of lines 6 and 7, a
Gram-Schmidt orthogonalisation process of A, is used to
obtain an updated Q matrix of which only the latest column,
Q.. is of further interest. Then, the residual is updated

recursively by r; = r; 1 — Q ,\tQi r;_1. And not until after
the loop and before line 9 in Fig. 1 a LS solution is computed
with xp, = Aj{b, only once. The question arises, whether
these two OMP variants are equivalent or not [13]. This is
especially true because [7] omits any proof or derivation of
their fundamentally different formulation and such has not yet
been published by others. However, these are indeed equivalent
as we proof in the appendix of this paper.

Various possibilities were proposed to solve the LS problem.
Some works [9], [13] rely on a Cholesky decomposition to
avoid the square root operation. In [4], a QRD was used within
each iteration. [7] proposed an updating modified Gram-
Schmidt process for the loop iterations and an alternative
Cholesky decomposition for the second stage. However, the
computation of a Gram-Schmidt process results in a QRD for
free and the pseudoinverse can then efficiently be computed
by

xa = Afb=(A¥AL) " AfD)
— (R"Q"QR) ' RQ"b=R'Q"b. (3

This was realised by Bai et al. [10], who computed an incre-
mental QRD during the first stage and used back substitution
for the second stage to obtain R~ to solve the LS problem.

Most VLSI designs were manually coded in an HDL,
probably using generic expressions for different problem
sizes, e.g. in [8]. It is noteworthy that other works already
acknowledged the need for higher design abstraction. The
results in [9], [13] were obtained with Matlab Simulink in
conjunction with Xilinx System Generator, which basically
is a graphical, model-based hardware description approach.
A major strength of these tools is the convenient support
for fixed-point data types with varying bit widths and easy
design verification, but for huge designs the usability suffers
as these are tedious to program and debug. HLS promises
to leverage the disadvantages while keeping the benefits.
Therefore, a first implementation of OMP with HLS was
reported on in [11], where the Xilinx’ Vivado High-Level
Synthesis (VHLS) tool was used. But unfortunately the authors
did not state any details on the problem sizes, synthesised
architecture or algorithmic method to compute the LS problem.

IV. ALGORITHMIC IMPLEMENTATION

In this section we will describe two significant modifications
to the method of computation of OMP. These are applicable
to classical and two-stage OMP alike although we restrict
ourselves to the classical variant in the following. First, we
propose rank-1 updates to the pseudoinverse as well as to
the QRD. And second, we suggest to perform mathematically
complex operations, i.e. division and square root, within the
logarithmic domain.

A. Least Squares with Rank-1 Updates

As previously discussed, a possible strategy to solve the
LS problem of OMP is to apply QR decomposition by
modified Gram-Schmidt orthogonalisation. This is the only

1858

2016 24th European Signal Processing Conference (EUSIPCO)

TABLE I: Comparison of Related VLSI Designs of Orthogonal Matching Pursuit Targeting FPGAs.

Problem Size Time Freq. Format Resource Utilisation
Ref. Variant M N K (us) (MHz) Qm.n Target BRAM DSP FF LUT NMSE
[7] 2-stage 32 128 5 24.0 39 Q10.22 Virtex-5 — — — — —
[8] 2-stage 64 128 5 10.0 85 Q10.14 Virtex-5 — — — — —
[8] 2-stage 64 256 8 27.1 85 Q10.14 Virtex-5 — — — — —
[9] classical 32 128 5 15.7 107 16 bit Virtex-5 42 134 2341 4012 47.0dB (PSNR)
[10] 2-stage 256 1024 36 ©622.0 100 18 bit Virtex-6 258 261 — 32010 —
[11] classical — 512 — — 128 float Zyng-7 19 27 3776 6605 —
[12] 2-stage ¢ 64 256 8 7.1 85 Q10.14 Virtex-5 — — — — 7.1x 1073
[13] classical 256 1024 36 340.0 119 Q9.9 Virtex-6 576 589 — 6208 38.9dB (PSNR)
This Work classical 32 128 5 10.7 103 Q4.14 Virtex-7 4 518 22564 18330 1.4 x 10~7
This Work classical 32 128 5 16.9 107 Q4.14 Virtex-7 4 130 13781 22345 1.4 x 10~7
This Work classical ® 32 128 5 17.1 114 Q3.15 Virtex-7 1 274 25733 46449 1.0 x 1073
This Work classical ® 64 256 8 65.1 101 Q3.15 Virtex-7 2 536 67104 129497 5.0 x 1074

@ A thresholding operation was introduced to accelerate the matrix-vector correlation. This is an algorithmic approximation, and therefore the results

are not directly comparable.

1: function LS-UPDATE(¢-DQ, DR~ A,,b)
2 r < 051
3 q< Ay
4 for j=1,...,t—1do > orthogonalisation
5: rj « (“7VQ;,q)
6: qﬁq_rj.(t—l)Qj
7 end for
8 ¢+ 1/|dll > normalisation factor
9 OQ« [t-VQ ¢-q] > update
o (t)R—l . (t—l)R—l _(t—l)R—l .r- <:|

O1xt—1 ¢
11: xp — OR1.OQH . b > least squares
12: return x,, Y Q, HR~!

13: end function

Fig. 2: Least squares estimation based on QR matrix decom-
position with rank-1 updating.

method which offers the possibility for iterative updating, is
numerically stable enough and can be parallelised nicely for
big matrices.

Not only can the QRD be updated iteratively. The same
applies to the computation of the pseudoinverse as well. The
LS solution based on QRD requires the inversion of R as
stated above in (3). Since OMP adds another column to A,
during each iteration (rank-1 update), Q and R grow by a
column to the right as well, while the updated R keeps its
upper triangular structure of course. If the QRD is complex-
valued, so will be Q and R, but diag(R) is real-valued in
either case. Now, block matrix inversion gives us

A B[s ~S~'BD"! A
¢ D| ~|-D-lcs-! D-'+D-!'cs'BD-!| @

where S is the Schur complement of D being defined as S =
A — BD™!C. Here, A is the the upper triangular matrix of
the previous iteration of size ¢t —1 x ¢ —1, which is extended by
another column vector of length ¢, i.e. B becomes a column
vector, D becomes a real-valued scalar value d, and, due to the
triangular structure, C = 014;—1 (row of zeroes). Therefore,

b First complex-valued OMP and thus not directly comparable either.

b Parameter extracted from other given results.

Eq. (4) can be simplified to
—A"b/d
/]) 5)

A bl [A!

0 d 10 1/d
Only a single real-valued division is necessary per iteration
to compute 1/d, which can then be multiplied ¢ — 1 times to
the vector —A ~'b. This division, though, has already been

computed during the updating of the QQ matrix and is still
available for the rank-1 update of R~'. Eq. (5) becomes

t-DRr 17" (=DR-1 —C-DR-1.p/r,
{ 0 rtt:| { O1x¢—1 1/7e

when we insert the R matrix at hand. To clarify the notation,
the upper left index denotes the iteration index, e.g. ‘" DR~
is the inverse matrix computed during the previous iteration.
Obviously then, only a further matrix-vector multiplication
(t=DR~!r of reduced rank ¢ — 1 scaled by ¢ := 1/ry is
needed to obtain R ~!. This matrix-vector product is com-
putationally cheap compared to a complete upper triangular
matrix inversion with a full back substitution.

The complete LS algorithm with rank-1 updating is given in
Fig. 2, which updates Q and R~! iteratively. This fits nicely
into the OMP algorithm in Fig. 1 as a replacement of line 6,
as the for-loop over t = 1,...,k embraces this update step.
Please note that R must not be stored since only the update
vector r and (is of further interest. This proposed algorithmic
transformation therefore yields a flatter loop hierarchy and will
eventuate optimised implementation results.

}, (6)

B. Application of the Logarithmic Number System (LNS)
The computation of ¢ = 1/||q|| = 1//x with z = (q,q)
requires a single reciprocal square root operation per iteration
t. However, its impact on computational complexity can be
mitigated by performing this operation within the logarithmic
number system. Then, the square root and division become a
much simpler bit shift and subtraction, respectively, and it is

¢ = ALOG (LOG(1) — (LOG(z) > 1)) , (7)

with LOG = log,y(z + 1) and ALOG = 2% — 1 for number
format conversion. We propose to integrate the methodology

1859

2016 24th European Signal Processing Conference (EUSIPCO)

TABLE 1II: Synthesis results for the reciprocal square root
operation within the logarithmic domain.

Function Format Latency DSP FF LUT Accuracy
LOG Q1.15 3 1 182 1619 6.1x107°
ALOG Q1.15 4 1 283 2059 6.1x107°
INVSQRT Q7.13 11 2 591 4688 7.5x107°
! ! ! !
600 ||l B BRAM z

£ I1Dsp4s

Ei 0o FF/100

= 400 1l mLuT/ioo P

=) =

o [a\]

2

=

2 200

(5}

~

() (b) (©) (C))

Fig. 3: Resource utilisation of four different architectures from
unoptimised (left) to highly parallelised (right).

of [6], i.e. nonuniform piecewise-linear function approxima-
tion (NPA), as a very efficient means to implement these
functions. The LOG and ALOG functions were approximated
by 43 resp. 51 linear segments in the form of agz + fy to
achieve a certain target accuracy. Hence, the converter mainly
consists of a case differentiation to determine the applicable
interval based on the most significant bits of the input number,
followed by a multiply-accumulate (MAC) operation. The
digital synthesis results are given in Tab. II. The inverse square
root according to (7) can be computed in 11 clock cycles,
using only two DSP slices and with an average accuracy
of 7.5 x 107 compared against a double precision software
model. The application of the LNS and NPA is needed,
because otherwise the HLS tool will infer costly floating point
arithmetic, which takes about 70 cycles to compute (.

V. HIGH-LEVEL SYNTHESIS RESULTS

We implemented the OMP algorithm with the modifications
discussed above with Xilinx Vivado High-Level Synthesis
(VHLS) following the coding principles and guidelines set
forth in [3]. All synthesis results given in this paper target
a Xilinx Virtex-7 FPGA (xc7vx690) at 100 MHz clock fre-
quency. The C++ source code was written with parametrised
static memory allocations and verified against a Mathworks
Matlab model for floating point data types. Thereby we
followed a data type-agnostic design methodology, i.e. we
solely utilised self-defined data types with the typedef
keyword. By this, exactly the same C++ code can serve as a
starting point for digital synthesis, simply with exchanged data
type definitions or parameter sets, e.g. the OMP problem size
(M, N, k). The following results are, if not stated otherwise,
for a (32,128,5) setup with Q4.14 fixed-point precision (i.e.
18 bits word width with four integer bits and 14 fractional
bits) to match the architecture of the DSP slices and Q8.28
for selected MAC operations.

400 | | |
§ lEBrRAM -

£ 3001 Bapspss || | @ & F g |

i 0o FF/1000 bl <

= Brrut/i000 «

= 200 = e

g

g =

g 100 e 2|
— ©$ o

[ap)
[a\]

float fxp

fxp*

float fxp

fxp*

Fig. 4: Resource utilisation with different data types for real-
valued (left) and complex-valued (right) computation.

Architecture synthesis by HLS heavily depends on com-
piler directives (pragma). The two most relevant pragmas
supported by VHLS are HLS UNROLL for loop-unrolling
(parallelisation) and HLS PIPELINE for automatic insertion
of pipelining stages and reducing loop latencies. Fig. 3 shows
the synthesis results for four different sets of directives: (a)
is a design with minimal resource utilisation as the default
optimisation goal of VHLS; (b) computes the correlation and
selection step completely parallelised, i.e. the number of DSP
slices is mainly influenced by M and it takes N cycles to
compute Afr; (c) is the previous design where additionally
almost all loops are pipelined; (d) is a design with all second-
level loops unrolled and thus highly parallelised. However, (c)
constitutes the best trade-off between resource utilisation and
computation time.

To facilitate complex-valued operation, we made extensive
use of the complex class of the C++ Standard Library which
is supported by VHLS for synthesis. The data type-agnostic
design methodology could be kept even in this case because
of further C++ language features, which are (i) class and
function templates and (ii) operator overloading. For example,
the std: :conj function was overloaded for all real-valued
data types to simply return the value. Complex multiplication
was taken care of by the Standard Library since based on the
data type the C++ compiler and VHLS can infer the meaning
of the multiplication operator.

In Fig. 4 the impact of different data types is compared
for architecture (c), as described above. “fxp” denotes the
above mentioned Q4.14 format and “fxp*” the same but with
saturation arithmetic and number rounding enabled. These
are typical DSP features and improve the normalised mean
squared error (NMSE), but only a little from 1.4 x 1077 to
1.8 x 1078, VHLS is also able to synthesise a floating point
design which yields an NMSE of 1.3 x 1072 (single preci-
sion float). However, the resource utilisation is inefficient
compared to the gain in accuracy. The right side of Fig. 4
shows results for the complex-valued case. Except for floating
point operation, the complex designs consume about twice the
resources as it can be expected. Nonetheless, all synthesised
architectures do not exceed the capacity of the target FPGA.
Floating point designs avoid numerical issues and are faster

1860

2016 24th European Signal Processing Conference (EUSIPCO)

to create, but they result in a large resource utilisation.

Details of selected synthesis results are given in Tab. L.
Besides the fact that HLS supposedly will never create an
RTL design as efficient as an experienced hardware designer
would do, the generated digital architectures can compete
with existing works. A real-valued OMP of size (32,128, 5)
can be computed within 10.7us or 16.9us, depending on
the degree of parallelisation, which is comparable to the
results given in [9]. The same can be said about the resource
utilisation, although VHLS obviously favours distributed RAM
over BRAM. The complex-valued digital architecture of OMP
is with 17.1 us almost as fast as the real-valued one.

VI. CONCLUSION

The results show that the rapid digital architecture design
flow based on HLS used in this paper is a superior alternative
to the traditional RTL design methodology. HLS plays an
important role to enlarge the design space and facilitates fast
design space exploration: architectures for various problem
sizes, data types (real and complex) and different degrees of
parallelisation can all be synthesised based on the very same
C++ source code and set of HLS directives. And the results
can compete with prior works. The key enabler for this is the
applied data type-agnostic programming style. This allows us
to report on the first digital architecture for complex-valued
sparse signal recovery with OMP.

VII. APPENDIX

Let A) be the matrix of selected columns of A. Since

the cardinality of A increases with each iteration by one, its

dimensionality is M x t, with t = 1,.... k. Q and R are the

products of the Gram-Schmidt orthogonalisation process of

A\, and as the latter increases in size with each loop iteration,
so do Q and R,

QR =A,. ®)

Further it is xA = A{b = R71Q”b as stated above in
eq. (3). Now, Tropp’s and Gilbert’s residual update is given
by [4]

r;=b—Axx,, with xo =Afb, 9)

whereas Septimus’ and Seinberg’s residual update strategy
is [7]

rp=r11 - QQ/ri_1=(I1-QQf)ri1.

To show the equivalence between (9) and (10), we will first
insert (8) and (3) into (9):

ry = b — AAAXb == (IMX]\/I - AAAX) b

(10)

=(I-QRR'Q")b=(I1-QQ")b. (1D
The first two iterations according to (10) are
ri=I-QiQ{)ro=(1I-QiQ{)b, and (12)
r;=(I1-QQ3)I-Q:Qf)b
= (I-Q:Qf — Q2Q7 +Q.Q;Q:Q)b
= (I-QQf - Q:Q3)b, (13)

using the orthogonality of the columns of Q, (Q;,Q;) = 0,
Vi, j,i # j. Hence, after the ¢-th iteration it is

r=(I-QQf - QQ7 - - QQ/)b
t
= (1-3-Q@Qf)b=(1-QQ")b,

(=1

(14)
(15)

which is identical to (11) for every iteration ¢. Therefore, the
classical OMP by Tropp and Gilbert and the two-stage OMP
by Septimus and Steinberg are indeed equivalent. Based on
the same residual they will always select the same support set
and return the same solution after the LS step. B

ACKNOWLEDGMENT

This work was funded by the German Research Foundation
(DFG) under grant PA 438/8-1.

REFERENCES

[1] B. Menhorn and F. Slomka, “Confirming the Design Gap,” in Compu-
tational Science, Engineering and Information Technology, Proceedings
of the Third International Conference on, ser. Advances in Intelligent
Systems and Computing, vol. 225. Heidelberg: Springer International
Publishing, Jul. 2013, pp. 281-292.

[2] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A Survey
and Evaluation of FPGA High-Level Synthesis Tools,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, Dec.
2015.

[3] Xilinx Inc., Vivado Design Suite User Guide High-Level Synthesis, Nov.
2015, UG902 (v2015.4).

[4] J. Tropp and A. Gilbert, “Signal Recovery From Random Measurements
Via Orthogonal Matching Pursuit,” Information Theory, IEEE Transac-
tions on, vol. 53, no. 12, pp. 46554666, Dec. 2007.

[5] B. Knoop, S. Schmale, D. Peters-Drolshagen, and S. Paul, “Activity
and Channel Estimation in Multi-User Wireless Sensor Networks,” in
20th International ITG Workshop on Smart Antennas (WSA), ser. ITG-
Fachbericht, no. 261, Information Technology Society in the VDE (ITG).
VDE Verlag, Mar. 2016, pp. 289-293.

[6] J. Rust, F. Ludwig, and S. Paul, “Low-Complexity QR Decomposition
Architecture using the Logarithmic Number System,” in Design, Au-
tomation Test in Europe Conference Exhibition (DATE), Mar. 2013, pp.
97-102.

[71 A. Septimus and R. Steinberg, “Compressive Sampling Hardware Re-
construction,” in Circuits and Systems (ISCAS), Proceedings of 2010
IEEE International Symposium on, May 2010, pp. 3316-3319.

[8] J. Stanislaus and T. Mohsenin, “High Performance Compressive Sensing
Reconstruction Hardware with QRD Process,” in Circuits and Systems
(ISCAS), IEEE International Symposium on, May 2012, pp. 29-32.

[9] P.Blache, H. Rabah, and A. Amira, “High-Level Prototyping and FPGA

Implementation of the Orthogonal Matching Pursuit Algorithm,” in

Information Science, Signal Processing and their Applications (ISSPA),

2012 11th International Conference on, Jul. 2012, pp. 1336-1340.

L. Bai, P. Maechler, M. Muehlberghuber, and H. Kaeslin, “High-Speed

Compressed Sensing Reconstruction on FPGA using OMP and AMP,”

in Electronics, Circuits and Systems (ICECS), 19th IEEE International

Conference on, Dec. 2012, pp. 53-56.

H. Rabah, A. Amira, and A. Ahmad, “Design and Implementaiton of a

Fall Detection System using Compressive Sensing and Shimmer Tech-

nology,” in Microelectronics (ICM), 2012 24th International Conference

on, Dec. 2012, pp. 1-4.

J. Stanislaus and T. Mohsenin, “Low-Complexity FPGA Implementation

of Compressive Sensing Reconstruction,” in Computing, Networking and

Communications (ICNC), International Conference on, Jan. 2013, pp.

671-675.

H. Rabah, A. Amira, B. Mohanty, S. Almaadeed, and P. Meher, “FPGA

Implementation of Orthogonal Matching Pursuit for Compressive Sens-

ing Reconstruction,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 23, no. 10, pp. 2209-2220, Oct. 2015.

[10]

[11]

(12]

[13]

1861

