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Abstract—Ultrafast ultrasound (US) imaging based on plane
wave (PW) insonification is a widely used modality nowadays.
Two main types of approaches have been proposed for image
reconstruction either based on classical delay-and-sum (DAS) or
on Fourier reconstruction. Using a single PW, these methods
lead to a lower image quality than DAS with multi-focused
beams. In this paper we review recent beamforming approaches
based on sparse regularization methods. The imaging problem,
either spatial-based (DAS) or Fourier-based, is formulated as
a linear inverse problem and convex optimization algorithms
coupled with sparsity priors are used to solve the ill-posed
problem. We describe two applications of the framework namely
the sparse inversion of the beamforming problem and the
compressed beamforming in which the framework is combined
with compressed sensing. Based on numerical simulations and
experimental studies, we show the advantage of the proposed
methods in terms of image quality compared to classical methods.

Index Terms—Ultrasound, plane wave imaging, sparsity, com-
pressed sensing

I. INTRODUCTION

In the last years, ultrafast ultrasound imaging (US) based
on plane wave (PW) insonification has become a widely used
modality in the US community. Indeed, while conventional
beamforming methods rely on a sequential transmission of
a number of focused waves equal to the number of scan
lines, thus limiting the frame rate to several tens of frames
per second, PW imaging only needs few insonifications to
reconstruct an image, enabling to reach far higher frame rates,
around thousands of frames per second, and opening a whole
range of applications [1].

The ability to perform ultrafast imaging is closely linked to
the possibility to implement efficient beamforming methods.
Nowadays, two main approaches have been developed namely
spatial-based approaches [2] where the image is reconstructed
using delay-and-sum (DAS) technique, and Fourier-based ap-
proaches [3]–[5] where the Fourier spectrum of the received
raw data is used to reconstruct the final image.

The use of few PW insonifications usually leads to a lower
image quality than classical DAS approaches with multi-
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focused beams [2]. Indeed, instead of being focused to the
region of interest, the energy carried by a PW is spread over
all the medium which induces a decrease of the signal to noise
ratio. Moreover, the information carried by a PW allows to
retrieve partial information of the final image which makes
the beamforming problem ill-posed. In addition, since all the
beamforming methods are based on numerical approximations
of continuous expressions, they implicitly make use of grid-
ding and interpolation which lead to measurement inaccuracies
and thus to a decrease of the image quality [6].

Compressed sensing (CS) is a mathematical framework to
recover signals from incomplete information [7] that has been
successfully applied to medical US imaging (see [8], [9]
and references therein). In this paper we propose a general
framework based on reformulating the beamforming process,
either Fourier-based or spatial-based, as an inverse problem
which is solved by exploiting sparsity of US images in a
redundant dictionary. We detail two main applications of
the proposed framework, only differing in the measurement
model. The first one is the use of sparse regularization for im-
age quality enhancement [8]. The second one is a compressed
beamforming approach in which the desired image is retrieved
from only few samples of the raw data.

The paper is organized as follows. Section II reviews the
existing beamforming approaches. Section III describes the
proposed framework and details a general formulation of
the inverse problem. Sections IV and V illustrate the two
applications of the proposed framework and show the benefits
of the proposed approach through numerical simulations and
in vivo experiments.

II. BACKGROUND

After a PW insonification, the received signal r (xi, t) at
the US probe (linear array of transducers), in a transducer at
position xi and at time t, the so called raw data, consists
of backscattered echoes from the medium. In order to be
exploited, the positions of the inhomogeneities are inferred
from these echoes in the process called beamforming. The
signal obtained after beamforming is usually denoted as radio
frequency (RF) signal and will be designated by s (x, z) in the
following sections. The conventions used in the next sections
are detailed in Figure 1.
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Fig. 1: Axis convention and time delay calculation for a steered
PW with angle θt.

A. Fourier-based beamforming methods

In Fourier-based beamforming, the k-space (Fourier) repre-
sentation of s (x, z) is related to the k-space representation
of r (xi, t) by a frequency remapping [3]. Thus, the raw
data are linked to the desired image through a composition
of a non-uniform Fourier transform (NUFT) which projects
the desired image on the k-space of the raw data and an
inverse 2D Fourier Transform (FT) [6]. Three main approaches
for Fourier-based beamforming have been developed in the
literature which differ in the frequency remapping. The first
model developed by Lu et al. uses the X-waves relationship to
model the behaviour of the transducer arrays at transmission
and reception [10]. Formally, the following remapping is
derived: {

kx = k′x − k′z sin (θt)

k =
k′2x +k′2z

2k′z cos(θt)+2k′x sin(θt)
,

(1)

where (kx, k) denotes the k-space coordinates of the raw data
with k = f

c and f the temporal frequency, and (k′x, k
′
z) denotes

the k-space coordinates of the desired image. The second
approach, proposed by Garcia et al., is based on the Stolt’s
migration technique and proposes the following remapping [4]:{

kx = k′x
k = ĉ

csign (k′z)
√
k′2z + k′2x

(2)

with ĉ = c√
1+cos(θt)+sin2(θt)

.

Very recently, Bernard et al. demonstrated, using Fourier
slice theorem, that the temporal FT of a received PW steered
with a given angle θt is a radial line in the k-space of the
desired image [5].

B. Spatial-based beamforming method

Spatial-based approaches for beamforming relies on the
so called DAS method [11] which has been applied to PW
imaging by Montaldo et al. in [2]. In this technique, the travel-
time curve corresponding to a given (x, z) is estimated and
all the backscattered echoes lying on this curve are integrated.
The value of this integral is then assigned to the corresponding
point in the desired image. Thus, for a given PW insonification

with angle θt, the raw data r (xi, t) can be obtained using the
following relationship [12]:

r (xi, t) =

∫∫
(x,z)∈Ω

s (x, z) dxdz, (3)

where Ω =
{

(x, z) | (ct− z cos (θt)− x sin (θt))
2 − (x− xi)2 − z2 = 0

}
.

If we consider a PW with normal incidence (θt = 0), then
the integral (3) can be modified into the following equation:

r (xi, t) =

∫
α∈R

s (x (α) , z (α))

√
1 +

(α− xi)2

(ct)
2 dα, (4)

with x (α) = α and z (α) = 1
2ct

(
(ct)2 − (α− xi)2

)
.

III. GENERAL FRAMEWORK

A. The inverse problem

Sparse regularization methods mainly rely on two pillars,
namely the formulation of the considered problem as an
inverse problem and the compressibility of the desired im-
ages in a given model. Formally, we firstly derive a linear
measurement model H ∈ RN×M such that:

r = Hs+ n (5)

with r ∈ RN the discretized raw data, s ∈ RM the RF image
and n ∈ RN the measurement noise, and we secondly provide
a model Ψ ∈ RM×P such that s has a sparse decomposition
γ ∈ RP on Ψ, i.e. such that s = Ψγ and γ has few non-
zero elements. We retrieve s from r by solving the following
convex problem (synthesis formulation):

min
s̄∈CN

‖Ψ†s̄‖1 subject to ‖r − Hs̄‖2 ≤ ε, (6)

where ‖ · ‖1 denotes the `1-norm, Ψ† denotes the adjoint
operator of Ψ and s̄ designates the RF image. The choice of
the `1-norm is a convex relaxation to promote sparsity. While
several methods may be applied to automatically identify the
best value of the regularization parameter ε, the choice of the
optimal parameters is out of the scope of the paper. In the
study, ε is considered to be empirically tuned by the user based
on visual quality.

B. The sparsifying model

In this paper, the average sparsity model proposed in
[13] is used. This model has been previously studied in the
context of US images in [8]. The dictionary, composed of
a concatenation of several frames, enables to better capture
image structures that are often sparse in several frames, thus
leading to improved image reconstructions compared to single
frame models.

In this study, the dictionary is composed of the concatena-
tion of Daubechies wavelet bases from Daubechies 1 (Db1) to
Daubechies 8 (Db8). Thus,

Ψ =
1
√
q

[Ψ1, ...,Ψq]

where q = 8 and Ψi denotes i-th Daubechies wavelet. Db1 is
the Haar basis promoting piece-wise smooth signals while Db2
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to Db8 provide smoother sparse decompositions. The sparsity
prior used to promote average sparsity is thus:∥∥Ψ†s

∥∥
1

=

q∑
i=1

∥∥∥Ψ†i s
∥∥∥

1
.

IV. SPARSE REGULARIZATION FOR IMAGE QUALITY
ENHANCEMENT

A. Measurement operators

The first application of the framework described in Section
III aims at enhancing the quality of the reconstruction for PW
imaging. In order to derive the measurement models associated
with the methods described in Section II, we firstly introduce
the following gridding of the continuous image space: x =

{
(m− 1) L

NX
, ∀m ∈

{
−NX2 + 1, ..., NX2

}}
z =

{
(l−1)Zmax

NZ
, ∀l ∈ {1, ..., NZ}

} (7)

with L the width of the probe, NX the number of image
samples in the lateral direction, NZ the number of image
samples in the axial direction and Zmax the maximum depth.
The gridding of the raw data is imposed by the number
of transducers in the lateral direction and by the sampling
frequency in the axial direction according to the following
equations:{

xi =
{

(m− 1)pt − Nt
2 pt, ∀m ∈ {1, ..., Nt}

}
t =

{
(l−1)
fs

, ∀l ∈ {1, ..., Nr}
} (8)

with Nr the number of raw data samples in the axial
direction, fs the sampling frequency, pt the probe’s pitch
and Nt the number of transducers in the probe. We de-
rive the two matrices S = (Skl)k∈{1,...,NZ},l∈{1,...,NX} and
R = (Rij)i∈{1,...,Nr},j∈{1,...,Nt} which are respectively the
discretization of s and r on the grids (7) and (8) respectively.
We define r and s as vectorized versions of R and S obtained
by concatenating the columns of the matrices.

1) Fourier-based model: From equation (7), the corre-
sponding grid of the image k-space can be deduced: k′x =

{
2π(m−1)

L , ∀m ∈
{−NX

2 + 1, ..., NX2
}}

k′z =
{

2π(l−1)
Zmax

, ∀l ∈ {1, ..., NZ}
}
.

(9)

The same reasoning can be applied to deduce the k-space
grid of the raw data (kx, k). Given the discretized RF image
s, the k-space representation y of the raw data on the grid
(kx, k) is obtained by applying a composition of a 2D discrete
Fourier transform (DFT) FS on the grid (k′x, k

′
z) followed by

an interpolation on (kx, k). This operator, known as the non
uniform fast Fourier transform (NUFFT) [14], can be written
as GFS in which G is a matrix implementing the convolutional
interpolation kernel. Then, r is obtained from y by a 2D
inverse DFT F†R on the grid (kx, k) and the following equation
holds:

r = F†RGFSs+ n = HFs+ n (10)

with n ∈ RN representing the noise induced by the model
inaccuracies and HF the measurement model. It has to be
noted that HF is ill-posed since the frequency content of the
raw data only allows to recover partial information in the k-
space of the final image and vice-versa.

2) Spatial-based model: The spatial-based model is ob-
tained by discretizing equation (4) using the grids described
in equations (7) and (8). In order to do so, we firstly discretize
the continuous variable α by introducing the following vector:{

α ∈ RJ
−L2 ≤ α1 < α2 < ... < αJ ≤ L

2

with J ∈ N. We thus have:

Rij =
J∑
k=1

s (x (αk) , z (αk))C (αk) ,

with C (αk) =
√

1 + (αk−xi)2
(ct)2

.
In a second step, we compute each s (x (αk) , z (αk)) on

the grid (7) using an interpolation with kernel K = (Kij) ∈
RNK×NK . The following equation holds:

Rij =
∑J
k=1 C (αk)

∑NK
p=1

∑NK
l=1 KplSpαk+p−bNK2 c,lαk+l−bNK2 c

(11)

where b·c denotes the floor function and (pαk , lαk) is the
closest point to (x (αk) , z (αk)) lying on the grid. In the
following, we assume that α = x and that K is a linear
interpolation in the axial direction and can be written as

K =

(
1 0
1 0

)
. More elaborated quadrature rules (Simpson,

Gauss-Legendre) and interpolation kernels may be used in (11)
which should lead to better image quality. Following equation
(11), R and S are related by a 4D−matrix HS =

(
HSijkl

)
.

HS is then reduced to a 2D matrix by vectorizing both S and
R and the following inverse problem is obtained:

r = HSs+ n. (12)

As for Fourier-based beamforming, it should be noticed that
HS is ill-posed since the raw data carry only partial informa-
tion on the desired image and vice-versa. In equations (10)
and (12), s is retrieved from r by solving problem (6).

B. Experiments

The discretization of the continuous NUFT in Fourier-
based beamforming induces measurement inaccuracies and
leads to a decrease of the image quality (contrast) [8]. The
usual way to address this problem is by performing a zero-
padding in the k-space of the echoes which improves the
accuracy of the interpolation performed in the NUFT [6].
However, such method induces a non-negligible increase of
the computational complexity and the gain in terms of image
quality remains limited. Moreover, the measurement operator
being ill-posed due to the partial information carried in the
k-space of the raw data, the adjoint of HF does not lead
to the optimal reconstruction. For spatial-based method, the
quality of the reconstruction is directly linked to the pitch
and sampling frequency of the probe. As for Fourier-based
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approach, since the raw data only contain partial information
(not for all the points lying in Ω), the operator HS is ill-
posed. In order to achieve reasonable image reconstruction,
the axial direction is usually sampled at far higher frequency
than Nyquist frequency leading to both an higher data rate and
a bigger amount of delays to be calculated [15] .

In order to show the benefits of the proposed method in
terms of image quality, a numerical study of the contrast is
performed. A standard linear probe whose settings are given
in Table I is implemented using Field II [16], [17]. Constant
speed of sound is assumed (1540 m.s−1).

Parameter Value
Number of elements (Nt) 128
Center frequency (f0) 5MHz
Wavelength (λ) 0.31 mm
Sampling frequency (fs) 25MHz
Pitch 0.1953 mm
Kerf 0.05 mm

TABLE I: Probe characteristics.

An anechoic cyst which is composed of a 8-mm diameter
anechoic occlusion at 4 cm depth embedded in a medium
with high density of scatterers (20 per resolution cell) is
insonified with one PW with normal incidence. No apodization
is used neither at transmission nor at reception. The RF image
is reconstructed with both the classical methods described
in Section II and the proposed framework. The envelope
image is extracted from the reconstructed RF image, gamma-
compressed using γ = 0.3 and finally converted to 8-bit gray
scale to get the B-mode image. The contrast metric defined
in the following equation is computed on the B-mode image
[18]:

CR = 20 log10

|µt − µb|√
σ2
t+σ2

b

2

(13)

where µt and µb (σ2
t , σ

2
b ) are the means (variances) of re-

spectively the target and the background. Table II displays the
contrast values of the classical method without upsampling
(column 1), with upsampling (column 2) and of the proposed
framework without upsampling (column 3). The upsampling
consists in a zero-padding of a factor 2 in the axial direction
and a factor 1.5 in the lateral direction for the Fourier-based
methods and an upsampling of a factor 4 compared to the
Nyquist frequency for the spatial-based approach. While the
benefit of the zero-padding on the Fourier-based approaches
has already been demonstrated [6] and is visible in Table II, the
increase of the sampling frequency is not so beneficial for the
spatial-based approach. Indeed, a higher sampling frequency
leads to a better estimation of the delays. However, since an
interpolation is already performed to improve the estimation of
the delays, such a high sampling frequency is not required. The
results show an increase of the contrast for the proposed frame-
work, for both Fourier-based and spatial-based approaches.
Since the contrast is measured in the anechoic area, it is
directly linked to the amount of noise in the reconstructed
image and since the images are obtained through simulation,

the only source of noise is induced by the measurement model
(gridding). This decrease can be observed in the anechoic area
of the B-mode images displayed on Figure 2.

Classic Classic upsampled Sparse
Fourier-based approach 5.59 7.29 9.62
Spatial-based approach 7.04 7.48 9.10

TABLE II: Contrast values (in dB) for the classical methods
and the sparse regularization framework. The Fourier-based
approach used in the study is the Lu method [3].
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Fig. 2: B-mode image of the anechoic phantom obtained
with 1 PW insonification and reconstructed with (a) classical
Lu method (CR = 5.58 dB), (b) classical Lu method with
upsampling (CR = 7.29 dB) and (c) Lu method with the
proposed framework (CR = 9.62 dB) without upsampling.

V. COMPRESSED BEAMFORMING

A. Measurement operator

The models described in equations (10) and (12) are
suitable to CS-based methods since they are formulated as
inverse problems. Formally, we consider an undersampled
measurement vector ru ∈ RP with P � N and the
corresponding projection operator P ∈ RP×N such that,
pij ∈ {0, 1} , ∀ (i, j) ∈ {1, ..., P} × {1, ..., N} and ru = Pr.
Retrieving s given ru poses the inverse problem defined in
the following equation:

ru = P (Hs+ n) = Hps+ nu , (14)

with Hp = PH ∈ RP×N , nu = Pn and H is either HS or HF
depending on the chosen approach. s is retrieved from ru by
solving problem (6).

It can be noticed that problem (14) is close to the one
described in [12] with the difference that the inverse scattering
problem (not the beamforming) is formulated using Green’s
functions in the above mentioned paper.

B. Experiments

In the following section, the undersampling operator P is
designed by randomly selecting Nc transducers at reception,
with Nc < Nt. This non-uniform spacing has proven to be
suited for CS in radar imaging [19].

The proposed method is evaluated on in vivo carotid images
acquired with a Verasonics ultrasound scanner (Redmond, WA,
USA) with a L12-5-50mm Verasonics linear probe whose
settings are given on Table I. The carotid is insonified with
one PW with normal incidence. No apodization is used neither
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in transmit nor in receive. The raw data are undersampled
according to the scheme defined above and the RF image
is reconstructed using the different methods. The envelope
image is extracted from the reconstructed RF image, gamma-
compressed using γ = 0.3 and finally converted to 8-bit
gray scale to get the B-mode image. The quality of the
reconstruction is evaluated by the structural similarity index
(SSIM) [20] and the normalized root mean square error
(NRMSE) computed on the normalized envelope image [15].
The reference images are chosen as the one obtained with the
classical method with full data. Table III displays the results.
As expected the higher the number of transducers, the better
the quality of the reconstruction. It can also be noticed that
the quality of the reconstruction is comparable between both
approaches. It seems that it is slightly better with the Fourier-
based method. However, this increase is not visible on the
B-mode images, displayed on Figure 3. Both speckle patterns,
necessary for tracking tools, as well as thickness of the carotid
artery plaque are well preserved with the proposed framework.

SSIM 30 64 90
Fourier-based approach 0.78 0.86 0.92
Spatial-based approach 0.70 0.78 0.82

(a) SSIM
NRMSE 30 64 90

Fourier-based approach 0.27 0.49 0.69
Spatial-based approach 0.25 0.43 0.55

(b) NRMSE

TABLE III: (a) SSIM and (b) NRMSE values for the carotid
images acquired with 30, 64 and 90 transducers (among 128)
randomly chosen across the aperture.
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Fig. 3: B-mode image of the carotid obtained with 1 PW
insonification and (a) 38 transducers and CS with Lu method,
(b) 38 transducers and CS with spatial-based method and (c)
128 transducers and classic spatial-based approach.

VI. CONCLUSION

In this paper, we propose a beamforming framework for
US imaging. In this framework, the beamforming process is
expressed as an inverse problem and solved using a sparsity
prior in a redundant dictionary. Two main applications follow
on from this formulation. First it enables to increase the
image quality by removing measurement artifacts induced by

the gridding operation. Secondly, it is suitable to the CS
framework and enables the reconstruction of high quality
images from undersampled raw data acquired using only a few
transducers. By alleviating data rates for acquisition, it opens
the door to a whole range of applications and especially to 3D
imaging where the amount of data to process remains a major
limitation nowadays.
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