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Abstract—Exploiting recent progress [1]-[4] in the characterization of
the detection performance of diffusion strategies over adaptive multi-
agent networks: ¢) we present two theoretical approximations, one based
on asymptotic normality and the other based on the theory of exact
asymptotics; and i7) we develop an efficient simulation method by tailoring
the importance sampling technique to diffusion adaptation. We show that
these theoretical and experimental tools complement each other well, with
their combination offering a substantial advance for a reliable quantitative
detection-performance assessment. The analysis provides insight into the
interplay between the network topology, the combination weights, and the
inference performance, revealing the universal behavior of diffusion-based
detectors over adaptive networks.

Index Terms—Distributed detection, adaptive network, diffusion, large
deviations, exact asymptotics, importance sampling.

I. INTRODUCTION, BACKGROUND AND MAIN RESULTS

The paradigm of distributed detection over adaptive networks can
be exemplified as follows. Several spatially dispersed agents, linked
together by a given network topology, continually sense streaming data
from the environment. The statistical properties of the data depend
upon an unknown binary state of nature. At any time instant, all the
individual agents arrive at their own decision about the actual state
of nature by implementing some distributed processing strategy that
relies on using their own observations along with the information
exchanged through cooperation with their neighbors. The goal is for the
networked agents to achieve a detection performance that is superior
to what they would attain if the agents acted individually without
cooperation. In addition, when operating in real-world scenarios, it
is essential to endow the agents with adaptive capabilities in order to
enable them to track the drifts in the statistical conditions in the data,
in the environmental conditions, and in the network topology, among
other possibilities. Therefore, the agents must be able to track such
drifts promptly (transient performance), while concurrently ensuring
small detection error probabilities when the underlying statistics remain
stable for a sufficiently long time (steady-state performance).

The literature about distributed detection is abundant. We refer the
reader to [5]-[7] as entry points on the subject. In particular, we
shall focus on fully-decentralized detection problems, where there
is no fusion center and only local interactions among the agents
are allowed. For such scenarios, solutions based on decentralized
consensus strategies with decaying step-size have been proposed in [8]—
[12], and the detection performance of these algorithms has been
characterized in different asymptotic frameworks [8]-[12]. In compar-
ison, a distinguishing feature of our work resides in the emphasis on
adaptive solutions. To enable continuous adaptation, it has been shown
that diffusion strategies with constant step-sizes (as opposed to the
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decaying step-size employed in consensus implementations [8]-[12])
are successful in combining the requirements of tracking and learning,
and offer wider stability ranges and enhanced steady-state performance.
While several results are available for diffusion strategies in connection
to their estimation performance [13]-[16], only a handful of results
have been obtained for the detection performance. For example, in [17]
the problem of using diffusion algorithms for detection purposes has
been considered, with reference to a Gaussian problem. More recently,
the general problem of distributed detection over adaptive networks
has been addressed in [1]-[4], where the fundamental scaling laws
governing the steady-state error probabilities in the asymptotic regime
of small step-sizes have been established.

A. Diffusion Implementation

Assume that, at time n, the k-th network agent, for k = 1,2,...,.5,
computes its local statistic x(n) (the observation itself, or a suitable
function thereof), whose expectation and variance will be denoted
by E[z] and o2, respectively. Data are assumed to be spatially and
temporally independent and identically distributed (i.i.d.). We start by
examining a useful diffusion implementation, namely, the ATC (Adapt-
then-Combine) implementation, which is preferred since it possesses
some inherent advantages in terms of a slightly improved mean-square-
error performance relative to other forms [18]. In ATC diffusion, the
state of agent k at time n is adjusted as follows [15], [16]:

S
ye(n) = > ar{ye(n — 1) + plae(n) — ye(n — 1)1},
=1

()]

where 0 < o < 1 is a small step-size parameter, and the combination
weights {ay ¢} are nonnegative and convex. It is convenient to collect
the combination weights into a square matrix A = [ay ¢], which turns
out to be right-stochastic, namely, a;, > 0, Al = 1, where 1 is
a column-vector with all entries equal to 1. Let us denote the n-th
power of A by B, = [by¢(n)] = A™. Throughout this article, we
assume that A has second largest eigenvalue magnitude strictly less
than one (a condition automatically satisfied when there is always a
path with nonzero weights between any pair of nodes, and at least one
node in the network has a self-loop, i.e., ai > O for some agent &,
see [13], [14]), which yields [19]:

n—,oo

bre(n) = pe & B, "= 1p, (©)
where the limiting combination (row) vector p = [p1,pa, ..., ps] (the

Perron eigenvector) satisfies pA = p, p, > 0, and Zle pe=1—
see, e.g., [13], [14].

Following a well-established approach in the adaptation litera-
ture [18] we now focus on 4) the steady-state properties (as n — 00),
and i7) the small step-size regime (1 — 0). We start by examining the
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steady-state behavior of yy(n) for a given step-size p. It is convenient
to evaluate explicitly the recursion in (1), and introduce the following
random variable:

n S

=303 T w1 = ) g (i) (i), 3)

i=1 =1
which, since observations are i.i.d. across time, shares the same
distribution of the diffusion output y(n) with null initial state y,(0)
(a legitimate assumption since we are focusing on the steady-state
behavior). In [1], [2] it has been shown that the diffusion output y(n)

converges in distribution to a limiting random variable yj ., that can
be represented as:
oo S
Y ED Y (1= ) o) (i) )
i=1 (=1
Moreover, it is possible to prove that E[y; | = E[x], and that
o S
—VAR yk»l,‘ :0_5 ZZMZ 2(Z 1)b2 () (5)

i=1 ¢=1

B. The Detector

Each agent in the network performs a binary hypothesis test in an
adaptive and fully distributed manner. In this setting, the agents collect
an increasing amount of streaming observations, whose statistical
properties depend upon an unknown binary state of nature, which
is represented by a pair of hypotheses, say, Hy and JH;. The local
statistics @y (n) are spatially and temporally i.i.d. conditioned on the
hypothesis. Throughout the article we assume that Eo[x] # E;[x]
(which means, when = is a log-likelihood ratio, that the detection
problem is not singular [20]), and, without loss of generality, that
Eolx] < Eq[z]. At time n, the k-th agent is tasked to produce
a decision about the state of nature, based upon its state value
yr(n). According to the theoretical considerations made in [1]-[4],
the decision rule is of the form:

ye(n) < v (6)

for some threshold value . The performance of this test can be
assessed in terms of its limiting Type-1 and Type-II error probabilities,
which are defined as, respectively: oy, = Polyy, > 1], and

Brn = Pilyr , <.
C. Main Result

The statistical characterization of the steady-state output y; , is usu-
ally a formidable task. However, for the case of Gaussian observations,
where the fact that linear combinations preserve Gaussianity implies
that yj , is Gaussian, for each value of 41 € (0,1) and for each value
of k€ {1,2,...,S}, we have [17]:

—E
Ply;, >7=Q (707[31> (for Gaussian observations), (7)

ko
where Q(-) is the standard Q— function for the Gaussian distribution.
For fixed values of E[x] and o2, and for v = 0, the corresponding
probability curves of the different network agents are depicted in
Fig. 1, with reference to the network represented in the inset plot,
and to the uniform averaging combination rule [13], [14]. Three main
observations emerge:

Error probability

10 20 30 40 50
1u

Fig. 1. Steady-state error probabilities for the fully Gaussian case according to (7).

O1) The error probabilities decay exponentially fast as functions of
1/, approximately with the same decaying rate.

02) Different agents exhibit different performance, depending on their
connectivity.

03) In accordance with the exponential decay, small changes in p can
lead to substantial variation in the error proabilities. Therefore, very
small error probabilities can be achieved.

It is useful to remark that, for a non-adaptive system (with dimin-
ishing step-size), it has been shown that the error probabilities decay
exponentially fast as functions of time. Accordingly, such probabilities
might reach “astronomically” small values as time elapses. In our
adaptive setting (with constant step-size), the situation is different
since the error probabilities stabilize as time elapses. The possibility
of reducing the error probabilities is now related to decreasing the
step-size. From these observations, at least two fundamental questions
arise:

Q1) Figure 1 has been generated by using the exact analytical formulas
that are available for the Gaussian case. Are there analytical formulas
and tools for more general cases?

Q2) Are the observed features representative of a universal behavior
of adaptive detection over diffusion networks?

The answer to both questions turns out to be in the affirmative.
Specifically, Q2 is answered through Q1, since only analytical formulas
can ascertain a universal behavior. With regards to Q1, it is virtually
impossible to obtain exact characterization of the error curves for
general detection problems. One must resort to an asymptotic (in the
small step-size regime) analysis. In Sect. II we present two asymptotic
tools. The first tool is based upon a Central-Limit-Theorem (CLT)
Gaussian approximation, which is exact in the small-deviations regime
where the threshold v scales as /u, and the error probabilities
become stable (rather than vanishing) as p goes to zero. For detection
applications, the latter regime is particularly useful in the framework
of locally optimum detection [9], [21], where the distance (i.e., the
signal-to-noise ratio) between the hypotheses is small. In contrast, the
Gaussian asymptotics fail to predict the correct tail behavior when the
error probabilities vanish as the step-size decreases. The second tool
used in the analysis is based upon a large-deviations analysis, which
is able to capture the correct tail behavior, a property that turns out to
be especially relevant in the light of the previous observation O3. In
this respect, the performance-prediction tools that will arise from the
analysis will complement each other well. However, there is still an
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important gap. In fact, since both approximations are asymptotic, they
must be complemented by proper tools to perform simulation. In the
light of observation O3, Monte Carlo simulations become prohibitive.
This difficulty can be overcome by resorting to importance sampling
techniques. Nevertheless, in order to design properly the importance
sampling simulator, it is crucial to have knowledge of the asymptotic
tail behavior of the involved random variables. In Sect. III, we shall
tackle and solve this problem. As a result, we will end up with
an ensemble of tools (different theoretical approximations, and the
importance sampling technique), whose joint application enables an
accurate and reliable quantitative analysis of adaptive detection over
diffusion networks.

II. ASYMPTOTIC TOOLS TO PERFORMANCE PREDICTION
A. Normal Approximations
In [1], [2] it is shown that
Yk —
Vo
where N(0, 1) denotes the standard normal distribution, the symbol ~
denotes convergence in distribution, and where

Elz] .,
[-’E] ,LLWO N(O, 1) (8)

s
2 A 2 _ 2 2
Olim 7}}{{})012,#/”7 01/2;pi (9)
In view of Slutsky’s Theorem, Egs. (8) and (9) imply that [20]:

y]:.’p, - E[SIJ] ,u:O

Ok,u

N(0,1) 10)

which amounts to using (7) as an approximation of the diffusion-output
performance. While the formulations in (8) and (10) are asymptotically
equivalent in distribution, we see that (10) can be interpreted as a
refinement of the first-order approximation in (8), with the limiting
variance being replaced by the actual variances (which depend upon
the agent index k). Accordingly, it is expected that (10) offers a
better performance in practice, since the actual variances might embody
useful information about the connectivity features of the agents.

B. Large Deviations and Exact Asymptotics

We first introduce some useful quantities. The Logarithmic Moment
Generating Function (LMGF) of the local statistics xy(n) is ¥ (t) =
In E[e***(™)]. Throughout the article, we assume that () < +oco for
all ¢ € R. Likewise, the LMGF of the steady-state variable yj , is
defined as ¢y ,,(t) £ InE[e!¥r.1]. We will be primarily concerned with
the limiting scaled LMGF:

[Pt (r)
o0 2 i pon,(e/m = [ P, an
pn—0 = Jo T

where the existence and the value of the above limit have been
ascertained in [3], [4]. Finally, we introduce the Fenchel-Legendre
transform of ¢(t): ®(y) £ sup,ep[yt — ¢(t)], and the domain where
®(v) is finite: Dg = {y € R: ®(y) < oo}, whose interior will be
denoted by Dg [22].

It was established in [1]-[4] that, as the step-size p vanishes, the
steady-state random variable y; , obeys a Large Deviations Principle
(LDP) with rate function ®(v), namely, that, for v € D%:

—®(v),

v > E[z]
v < E[z]

lim, o p Py , >1] =

. 12
lim, o p WPy}, <9] = (12)

A known limitation of large deviations resides in the fact that it neglects
all sub-exponential corrections. For instance, assume network agents
1 and 2 exhibit asymptotic error probabilities P, = e~ ®/# and P, =
10e~®/1 = = (1/mI@+o(D] where o(1) stands for any correction such
that o(1) — 0 as g — 0. These two probabilities have the same
exponent ®, but we shall always have P, = 10 P;, because the factor
10 acts as a sub-exponential term.

A refined analysis can be pursued by seeking an asymptotic ap-
proximation, 2 ,,(v), that ensures the much stronger conclusion:
Ply;,, > 7 = Peu(y)[l + o(1)]. This framework is commonly
referred to as exact asymptotics [22], [23].

The exact asymptotics for detection over diffusion networks were
obtained in [3], [4]. The result can be formally stated as follows.
Assume that x(n) is not lattice. Let v € D%, with v > E[z], and let
6, be the unique solution to the stationary equation ¢’(6) = ~. Then,
6, >0and, for k=1,2,...,5:

a K L@ ter,u(6)]
;%wad%%wwﬁe v (13)
with
() — @ t 2
ln(t) = [6(0) — pnn(t/p)] + 2D = bl

20°(t)
where the ratio e ,,(6,)/p remains bounded as y — 0.

We see that P, (y) = e~/ meM+o(M]  where the term o(1)
collects all the sub-exponential corrections. In particular, the (agent-
dependent) correction €y, (6) takes into account the network topology
and the combination weights, and is peculiar to the adaptive network.

III. IMPORTANCE SAMPLING AND CRAMER’S TRANSFORM

Consider a (continuous, for ease of description) random variable
y, with probability density function (pdf) f(y). Consider also another
pdf f(y) that does not vanish (except for zero-measure sets) when
f(y) > 0, and introduce the (likelihood-ratio) weighting function

w(y) = f(y)/f(y). It then holds that:

Ply>n)= [ w) )y =B [0@)gn] . 09

where J¢ is the indicator of an event £, and E f~[] denotes expectation
computed over the transformed pdf f(y). Thus, the quantity to be es-
timated can be regarded as the expectation, under the transformed pdf,
of the indicator of the event {y > ~}, weighted by the function w(y).
The rationale behind importance sampling is that, by an appropriate
choice of the weighting function, it is possible to map an event that
is rare under the original sampling pdf, f(y), into an event that is not
rare under the new sampling pdf f(y). In this way, the number of
Monte Carlo iterations needed to estimate the expectation is reduced,
because (important) samples are generated around the body (not the
tail) of the new distribution. An accurate estimate of the probability
tails is enabled by the weighting function w(y).

When working with random variables obeying the LDP, there is
a classical way to select the transformed pdf f (y). This is usually
referred to as exponential twisting of f(y), and amounts to selecting
w(y) = e WHME[E™] _ gee [22]. The aforementioned change of
measure was originally proposed by Cramér [24] to compute large-
deviations exponents, and is accordingly also known as Cramér’s
transform. The choice of a given exponential twisting (i.e., the choice
of the parameter n) is critical in determining the accuracy of the es-
timates produced by the importance sampling algorithm. Interestingly,
theoretical studies suggest to use for importance sampling the same
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exponential twisting needed to compute the error exponents — see,
e.g., [25]. For the classical and simplest case of summation of i.i.d.
random variables, the latter kind of exponential twisting is well-known
— see, e.g., [22]. For our specific problem of adaptive distributed
detection, the solution is more involved, and relies on knowledge of the
large-deviations characterization of the diffusion output. This solution
is accurately examined in [4], Appendix B, and amounts to selecting
n = 6,/p, where 6, is the solution to ¢'(6) = ~. Denoting by

n S
Gu(tin) £ IE[EEI] =N "0 (u(1 = p) b e(i)t) , (16)

i=1 (=1

the LMGF of the random variable y}(n) in (3), such choice yields:

w(y) = o 5 vroen(5m) a7

Unfortunately, in order to generate samples according to f (y), the
weighting function w(y) is not sufficient, since one needs to know
also the pdf f(y) of the random variable y}(n). As already observed,
knowledge of this distribution is seldom available. To overcome this
issue, one may consider running first a Monte Carlo simulation by
generating random instances of the local statistics x,(¢), and then
evaluating yj(n) through (3). This means that we must find the
appropriate change of measure applied to @,(¢) that would induce the
desired exponential change of measure on the random variable y;(n).
To this aim, let us denote by 7(z) the pdf of @,(i). We now show that
the desired goal can be achieved by drawing the (7, £)-th sample (%)
from the pdf:

ﬁi,é(x) — em,zw—lﬂ(m,z)ﬂ—(x) (18)

with 7,0 £ (1 — p)*=1by. ¢(7) 6. All these samples are still generated
independently, but now they are no longer identically distributed. Note
also that the above transformation depends upon the index % of the
agent under consideration, even if the subscript has been suppressed
for ease of notation. Let us introduce the joint ensemble X = {x,(i)},
fori=1,2,...,nand for { = 1,2,...,S. The expectation in (15) can
then be rewritten as:

. m(X)
Plyp(n) > v = E[J(y: (>} = Ex {mj{y;(n)>w}:| . (19
But since the x,(¢) are i.i.d., we have from (18):
X n ) n
;EX; = e~ Tl Bl meme (DA T () = y(yk (n)), (20)

where we further applied the definition of w(y) and Egs. (3) and (16).
This result shows that (19) corresponds to the expectation in (15) with
the pdf f(y) chosen as in (17).

IV. NUMERICAL EXAMPLES
We consider the canonical shift-in-mean detection problem:

Ho : di(n) ~ Z(d), Hy : di(n) ~ Z(d—p), 1)

with shift parameter p > 0, and with noise distributed according to the
Laplace pdf (with unitary scale parameter) .2 (d) = 1/2¢~ 4. In the
above formulation, dy(n) denotes the measurement collected by agent
k at time n. The corresponding local statistic x(n) is chosen as the

log-likelihood ratio, In ZST5=£) which yields:
—p, dk (n) < 0,
zr(n) =4 +p, di(n) > p, (22)
2dy,(n) — p, di(n) € [0, p].

Let mo(z) and 7 (z) denote the (generalized) pdfs of xj(n) under
Ho and H, respectively. It suffices to focus on g (z), since a shift-
in-mean with respect to a symmetric pdf yields, for the pdfs of the
log-likelihood ratio, 71 (z) = mo(—x). From (22) we get:

1 P 1 =
mo(x) = 55(m+p)+%5(x—p)+16_%ﬂ (%) , (23
where II(z) is a unit-width rectangular window centered at 0, and
d(z) is the Dirac-delta function. The corresponding LMGF of x(n)
is computable in closed form:

e—tp et=1)p

Zbo(t) = hl (T + 2

e—P/2

P sinch[p(t — 1 /2)}) ,

where sinch(z) £ sinh(z)/z, with sinch(0) = 1. We now show how
to implement the importance sampling method described in Sect. III.
Applying an exponential twisting with parameter 1 to mo(x) in (23),
straightforward algebra yields:

To(z) = g-0(z +p) + q40(x —p) + [1 —g- — g4 g(z), (24)
where (1)
=P L en=Dp
9= = So0em)’ = Sovem) (25)
and (r-1/2)
A 1 e®\n— T
EN I S —  f (0 26
9= 5 Sinchlp(n —172] " \ 2 20

We see from (24) that 7o(z) is a mixture of three components, such
that @, (n) is equal to —p (resp., p) with probability gq_ (resp., ¢+),
and is sampled from the pdf g(z) otherwise.

With regards to the combination policy, we consider the uniform
averaging rule [13], [14]. Denoting by Nj the k-th agent’s neigh-
borhood (including k itself), such a rule prescribes setting ap, =
1/INg| for £ € Ny, and zero otherwise. This choice provides a
right-stochastic A, whose Perron eigenvector has entries given by
pe = \Ng|/z:gn:1 |Non| [13], [14]. With regards to the detection
threshold, we follow the procedure described in [1], [2], obtaining
~ = 0, which implies oy, ,, = B,y since m1(x) = mo(—=). Finally, in
our simulations, we refer to a sufficiently large time horizon (steady-
state performance) and evaluate the error probabilities for different
values of the step-size.

In Fig. 2 we consider the network represented in the inset plot.
The performance of the agents is displayed as a function of 1/pu,
and different agents are marked with different colors. Specifically, we
show the two theoretical approximations [exact asymptotics in (13) and
normal approximation in (10)], along with the performance obtained
through the importance sampling recipe described in Sect. III. The
estimated error probability curves confirm that: ) the error probability
decays exponentially, approximately with the same decaying rate for all
agents; and i7) the curves are ordered so as to reflect the network con-
nection structure. The normal approximation turns out to be accurate,
especially in the leftmost region. We see that the variances in (10) seem
to contain useful information about the different detection performance
at different agents. However, as indicated by the theory, the predictions
obtained with the normal approximation cannot be assumed true as the
step-size decreases. The empirical probability converges towards the
exact asymptotics as the step-size decreases. The dependency between
the network structure and the detection performance at different agents
is correctly embodied in the exact asymptotics, as witnessed by the
correct ordering of the curves. In contrast to what happens for the
normal approximation, the predictions offered by the exact asymptotics,
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Fig. 2. Steady-state error probabilities o, , = Pk, for the Laplace example with
p = 0.6. The network topology is depicted in the inset, and the combination policy is
the uniform averaging rule. The performance of agents 1, 6, 9 and 14 is displayed.

for less connected agents, seem less accurate in the leftmost part of
the plot. In a sense, the two theoretical approximations complement
each other. Moreover, thanks to the simulation tool presented in this
work, we have been able to perform a careful empirical examination
of the detection performance, despite the very small values of the error
probabilities. Remarkably, we see that using the importance sampling
tool in conjunction with the available theoretical formulas allows an
almost complete extrapolation of the system performance.

In Fig. 3 we repeat the analysis with reference to the two different
networks shown in the inset plot, which are obtained from the network
in the inset plot of Fig. 2 by disconnecting agent 9 from agents
5, 6 and 8. The general conclusions are similar to those reported
from the analysis of Fig. 2. Joint inspection of Figs. 2 and 3 reveals
further interesting properties. First, the benefits of cooperation emerge
clearly, since the performance of the same individual agents when
the information percolates through the entire joint network, improves
with respect to the performance corresponding to the case of two
disconnected subnets. It is particularly interesting to compare the
performances of agents 1 and 14 in the latter scenario. We see that
agent 1 is less connected than agent 14. This would explain the fact
that, in the leftmost region of the plot, agent 1 has a worse performance.
However, as p decreases, the performance of agent 1 becomes better
than that of agent 14. One wonders why. The reason is because it can
be verified that the subnet of agent 1 has an error exponent (i.e., a
slope of the probability curve) higher than that of the subnet of agent
14. According to our large-deviations analysis, this fact implies that
the probability curve of agent 1 must cross that of agent 14.

In summary, we conclude that the presented tools (normal ap-
proximation + exact asymptotics + importance sampling) provide a
substantial advance in the quantitative performance analysis of adaptive
detection over diffusion networks.
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