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Abstract—This paper proposes a fixed-point local tone map-
ping operation (TMO) for high dynamic range (HDR) images.
A TMO is classified in two types: local and global. Although
a local TMO offers better results than global one, it requires
more resources such as a computational cost and memory space.
The proposed method uses fixed-point arithmetic with short data
to solve this problem. The method uses an intermediate format
which is composed of 8-bit mantissa part and 8-bit exponent part
instead of IEEE754 standard floating-point format. Moreover,
these mantissa part and exponent part are processed separately as
two integer numbers. As a result, the method reduces the memory
space. In addition, the method also reduces numerical range of
calculations; it facilitates to implement the method with fixed-
point arithmetic. The experimental results show that the method
reduces the memory and computational costs, and offers high
quality of tone mapped images comparable to the conventional
method.

I. INTRODUCTION

High dynamic range (HDR) images are increasingly being
used in many fields: photography, computer graphics, medical
imaging, and others. In contrast, display devices which can
express the pixel values of HDR images are not popular yet.
Therefore, the importance of a tone mapping operation (TMO)
which generates a low dynamic range (LDR) image from an
HDR image is growing.

Various research works on tone mapping have so far been
done [1]-[7]. Many of these focus on compression techniques
or quality of tone mapped images. Most of those were
concentrated on finding a tone mapping function suitable
for human visual systems [1]-[4]. Recently, some papers
dealt with reducing communication cost combining with data
compression technologies [5]-[7]. Unlike these previous re-
search works, this paper focuses on “resources” of a TMO
such as a computational cost and memory space for easy
implementation.

There are two types of TMOs: global operators and local
operators. The former use the same tone mapping function for
all pixels in the HDR image. On the other hand, the latter try
to find optimal function for each pixel. They have advantages
in terms of contrast preservation compared with the former.
However, local TMOs require more resources than global ones.

To reduce resources of a TMO, an integer TMO approach
which deals with resource reduction is proposed in [8]-[12].
The method in [8], [9] treats a floating-point number as two
8-bit integer numbers which correspond to a exponent part
and a mantissa part, and applies tone mapping to these integer
numbers separately. The method reduces the memory space
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by using two 8-bit integer data instead of 64-bit floating-
point data such as IEEE754 [13]. Moreover, using 8-bit
integer data facilitates executing calculations with fixed-point
arithmetic because it eases the limitation of the bit length.
Fixed-point arithmetic is often utilized in image processing
and embedded systems because of the advantages such as
low-power consumption, the small circuit size and high-speed
computing [14]-[16]. The method in [10]-[12] implements
the integer TMO with fixed-point arithmetic, and therefore
it reduces the computational cost as well. However, these
methods are all global TMOs.

On the other hand, fast local TMOs are proposed in [17],
[18]. These methods utilize parallel processing for high-
speed computing. The method in [17] replaces a Gaussian
filter with a box filter to reduce a computational cost during
convolution. However, these are for graphics processing unit
(GPU) implementation. In other words, these are not for low-
memory or fixed-point implementation.

This paper solves these problem by extending an integer
TMO for local operators. The proposed method processes
the exponent part and the mantissa part separately in a local
TMO including the convolution. Moreover, the method can
conduct all the calculations of the TMO with only fixed-point
arithmetic. By these features, the method can be executed
under limited resources, such as processors without a FPU
or low-memory. The experiments and evaluation confirmed
that the proposed method reduces the computational cost and
the memory cost, and keeps the quality of tone mapped
images, compared to the conventional method with floating-
point arithmetic.

II. TONE MAPPING OPERATION

The procedure of a TMO is described in this section. It gen-
erates an integer LDR image from a floating-point HDR im-
age. This section describes “Photographic Tone Reproduction”
which is one of well-known tone mapping procedures [1]. In
this section, the global operator is described at first. Then, the
difference between the global and the local is described.

A. Global Operator

(a) World Luminance
First, it calculates the world luminance L,,(z,y) of each pixel
x,y as

Ly (z,y) = 0.27R(z,y) + 0.67G(x,y) + 0.06B(x,y), (1)
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where R(z,y), G(z,y), and B(xz,y) are floating-point RGB
values of the input HDR image.

(b) Geometric Mean

The geometric mean L., of the world luminance L,,(z,y) is
defined as

- 1 M—-1N-1
L =exp <MN > ) log, <Lw<x7y>>) e

=0 y=0

where M and N are the width and the height of the input
HDR image, respectively. Note that Eq. (2) has singularity
due to zero value of L,,(x,y). It is avoided by introducing a
small value in [1]. However, its arbitrariness is not negligible
for pixel values in a floating-point format, since its pixel value
is also small. Therefore, only non-zero values are included
in the geometric mean in this paper.

(c) Scaled Luminance
Next, the scaled luminance L(x,y) is calculated as
Lu(z,y)

where « € [0, 1] is a parameter called “key value.”

(d) Display Luminance
Then, display luminance Ly(z,y) is computed with a tone
mapping function y() as

where Reinhard’s global operator [1] is specified as
L(z,y)
L =" 5
Yciobal (L (2, y)) 1+ L(z,y) &)

(e) LDR Image Generation
The values CF(x?y) € {RF(xay)aGF(xay)aBF(may) }
which are floating-point RGB pixels calculated by

C(z,y)
Lu(z,y)’
where C(z,y) € {R(z,y),G(z,y),B(z,y)} are the
floating-point RGB values of input HDR image.

Finally, the 24-bit color integer RGB values Cy(z,y) €
{R1(z,y),G1(z,y), Br(x,y)} of the resulting LDR image
are generated as

Cr(z,y) = round (Cp(z,y) - 255), (7)

Cr(z,y) = Lq(z,y) - (6)

where round(x) rounds x to the nearest integer value.

B. Local Operator

The local operator is obtained by replacing L(z,y) in the
denominator of Eq. (5) to V(x,y,s) which is derived from
L(z,y) and the Gaussian filter G(z,y, s) with various scale s
as

Vi(z,y,s) = L(z,y) © G(z,y, s), ®)
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Fig. 1. The bit allocation of the proposed intermediate format.

where ® is the convolution operator. The method finds the
largest scale s, which satisfies the following condition

|W('T7ya3m)| <€ &)

where

V(z,y,s:) = V(x,y,sit1)
2¢Oé/82 + V(l‘, Y, 31) .

The parameter ¢ is a sharpening factor. In [1], ¢ = 8 and
e = 0.05 are used as default values.
The local operator is finally defined as

yLocal(L(l‘y y)) = H‘[//.((z%

As described above, the global operator uses the same
function for all pixel. On the other hand, the local one tries
to find the optimal function for each pixel. Because of this,
although it gives better result than the global one, more
resources are required.

W(.’ﬂ, Y, si) =

(10)

(1)

III. PROPOSED METHOD

In this section, the proposed intermediate format utilized in
the method is described at first. Then, the integer TMO for
local operators is described.

A. Intermediate Format

An input HDR image is converted to the intermediate format
(Figure 1) at the first step of the proposed method. The pro-
posed method can be applied for various HDR image formats
by converting the input image to the intermediate format. This
format can be applied for the RGBE [19], the OpenEXR [20]
and the long-integer formats [11], [12]. Figure 1 shows the bit
allocation of the intermediate format. The encode functions
which yield the exponent part [r and the mantissa part Ip; of
each RGB channel I are defined as

Ip = [log, I +128],
IM _ |:l . 2136—IEJ ,

(12)
(13)
where [2] rounds « to the nearest integer greater than or equal
to z, and |z rounds z to the nearest integer less than or equal

to z. On the other hand, the decode function which yields the
original RGB value from the intermediate format is defined as

I = (Ip +0.5)- 27136 (14)

B. Integer TMO for Local Operator

The integer TMO is defined as the TMO which is imple-
mented with integer input and integer output. The integer TMO
defines new processes and replaces each tone mapping process
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Fig. 2. A new process defined in the proposed integer TMO.

by them. These new processes are composite functions shown
in Figure 2. In the proposed TMO, the numerical range in the
processes is significantly reduced because the exponent part
and the mantissa part are separated as two integer numbers.
Note that this technique of the integer TMO works well
by using the proposed intermediate format. The technique
does not work well for the IEEE754 format because it has
denormalized numbers as well as the OpenEXR [9].

The proposed integer TMO converts RGB values C/(z,y)
into the intermediate format at the first step. The exponent
parts Cg(z,y) € {Rp(x,y),Ge(z,y), Be(z,y)} and the
mantissa parts Cy (z,y) € {Ra (2, ), G (2, ), Bar (. y)}
are calculated as

Cr(z,y) = [log, C(z,y) + 128],
Cr(z,y) = {C(%y) ) 21367CE(17y)J .

5)
(16)

(a’) World Luminance
The exponent part L,,(x,y) and the mantissa part
Ly,, (x,y) of the world luminance L,,(z,y) are given as

Lyp(z,y) = [logg ML(x,y) — 8], (17)

Lpm(z,y) = {ML(z,y) . 27LwE(m’y)J , (18)
ML(x,y) = 0.27(Ru(z,y) + 0.5) - 2fte(@v)
0.67(Gar(z,y) +0.5) - 265 @v) 4.

0.06(Bys(z,y) +0.5) - 2Bs(®.y) (19)

where M L(z,y) is set to zero if Ry(x,y) = Gp(z,y) =
By(z,y) = 0. Lyp(z,y) and Ly, (x,y) are also set to
zero in this case.

(b’) Geometric Mean -
The exponent part L,p(z,y) and the mantissa part
Ly (z,y) of the geometric mean L,, are derived as

Lyg = [SLyn + SLyp +128], (20)

EwM _ [2SL’wAI+SLwE_E’wE+136J , (1)
1 M—-1N-1

SLup = 517 2. > Lus(z,y) —136), (22)
=0 y=0
1 M—-1N-1

SLum = 11 logy (L (x,y) +0.5).  (23)

8
I
o
<
Il
o

(¢’) Scaled Luminance
The exponent part Lg(x,y) and the mantissa part Ly (x,y)
of the scaled luminance L(x,y) are calculated as

Lg(z,y) = [logQ(ALw(x,y)) + Lywe(2,y) — Lup + 128} , (24)

Lar(e.y) = [ALy(a,y) - 290 bosCn) Lol -Tus | (25)
LwM(:c,y) + 0.5

ALy (z,y) = k- =202/ - 2 26

(z,y) T 105 (26)

(d’) Display Luminance
The exponent part Lz (x, y) and the mantissa part Lg,, (z,y)
of the display luminance L,(z,y) is calculated with a tone
mapping function. This calculation depends on the tone
mapping function to be used. Here, the local operator of
Eq. (11) is used as an example,

Lam(z,y) = {FL(:c,y) . 21367LdE(I,y)J ’ (28)
. e(z,y)
FL(z,y) = (Las(x,y) +0.5) - 2Lel@y .

2136 + (Vi (x,y, S ) + 0.5) - 2VE(@:y,5m)
The exponent Vg(z,y,s) and mantissa Vis(x,y,s) of
V(z,y, s) are defined as
Vis(@,y, ) = [logy((Las(2,y) +0.5) - 2bm () 7136
@(Gar(z,y,s) + 0.5) - 26E@v:9)=136 4 198/
Var(z,y,8) = [(Lar(a,y) +0.5) - 2E=@w)
(G (z,y,5) + 0.5) - 26E@v:8))  9Ve(@y,s) =136 | (31)

(30)

where Gg(z,y, s) and Gy (x,y, s) are the exponent part and
the mantissa part of the Gaussian filter G(z,y, s), and ® is
the convolution operator.

The method finds the largest scale s,,, which satisfies follow-
ing condition

(War(z,y, $m) + 0.5) - 2WE@:9:8m) =136 - ¢ (32)
where

Wg(x,y,s;) = [logy(|FW (x,y,s;)]) + 128], (33)

War(@,y,5:) = |[FW(w,y,5)] - 25567 Vewa) | 34)

FW(2,y,s:) =

(Var(,y, 81) +0.5) - 22 @30 — (Vi (2, y, 8i41) +0.5) - 2V (s (35)
2041360y /52 + (Vyr (2, y, 83) + 0.5) - 2VE(9:5:) ’

However, these calculations of Vg (x,y,s) and Vis(x,y, )
require high computational cost. The method can compute
these calculations efficiently by following steps.

First, the provisional exponent part Vi (z,y,s) is calculated
as

Vi(z,y,s) = max{Gg(u,v,s) + Lg(z — u,y —v)),
wu=01,--A—1v=0,1,---,B 1} — 136, (36)
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where A and B are the width and the height of the Gaus-
sian filter, respectively. Next, the provisional mantissa part
Vi(x,y,s) is calculated as

Vi(z,y,s) =

18-
Z (Gar(u,v,8) +0.5) - (Lys(z — u,y — v) + 0.5) - 25Var | (37)

nDﬂa>

SV = Gg(u,v,8) + Lg(z —u,y —v) — Vi(x,y,s) — 136.  (38)

Then, Vg(z,y, s) is obtained by adding a overflowed value
of Vi, (x,y,s) to Vi(x,y,s) as

0= UogZ(VM(Ia Y, S)) - 7J ) (39)
Vi(z,y,8) = Vg(z,y,5) + O. (40)

Finally, Vi (z,y, s) is obtained by
Var(,y.5) = [Vig(2,y.5) - 279]. (41)

(e’) LDR Image Generation
The 24-bit color RGB value Cy(z,y) of the resulting LDR
image is obtained by

Cr (JJ, y) =

round (RL(a:, NE 9CE(@,y)+Lap(zy)~Lur(z,y)—136 255)
(42)

RL(z,y) = (Lane(z,y) +0.5)(Car(z,y) +0.5) @)

Lw]\/[(l‘,y) + 0.5

In the above processes, the input and output data of each
calculation are all 8-bit integer data. The memory cost can
be reduced by using integer data. The next section describes
fixed-point implementation of the method.

IV. FIXED-POINT IMPLEMENTATION

In the integer TMO, only the data is converted to integer,
and the memory cost is reduced. However, the internal arith-
metic of the integer TMO is still with floating-point. This
section describes the way to execute the internal arithmetic
with fixed-point arithmetic. The proposed method introduces
fixed-point arithmetic to reduce the computational cost as well.

Most of equations can be calculated with fixed-point arith-
metic because each variable is expressed in 8-bit integer [11].
Nevertheless, Eq. (35) is difficult to be calculated without
floating-point arithmetic because the numerical range can be
very wide. Eq. (35) is used to find the scale s,,. The equation
does not affect on the pixel values directly. Therefore, the
method calculates it by branching and approximation. First,
the method deforms Eq. (35) as follows

1— Vv (z,y,5i41)+0.5

.9VE(z,y,8i41)— Ve (2,Y,5:)
Vi (z,y,s:)+0.5

FW(,T Y s) = ‘
s Yy Si a/s? 136 Vo(o.g.01

Ve - 20T Ve(@ye) 41
(44)

Furthermore, the method branches Eq. (44) into three cases
and approximates it based on the power of two in the denom-

inator as follows.

Case L1:If ¢ + 136 — Vg(x,y,s;) > 16 in Eq. (44), ‘1’ in
the denominator and the numerator can be ignored because
the left part of the denominator is very large, and so it is
approximated as

Var(2,9,5i41) 0.5 ovi(oy,801)-6-136

FW(z,y, )52

(45)

Case 2:If ¢ + 136 — Vg(x,y,s;) < —16 in Eq. (44), the
left part of the denominator can be ignored because it is very
small, and so it is approximated as

FW(xaya Si) ~

Vv (z,y, 8i41) + 0.5
Vam(z,y,s:) +0.5

Case 3:Otherwise, it can be calculated with fixed-point
arithmetic.

In addition, the method uses pre-calculated tables for calcu-
lations of 2” (in Eq. (21)) and log, (in Eq. (23)). Each table
consists of 16 x 256 bits.

The method can calculate all equations of the TMO with
only fixed-point arithmetic by these branching, approximation,
and tables. Note that the conventional method [1] consists of
floating-point data and floating-point arithmetic. In contrast,
the proposed method consists of integer data and fixed-point
arithmetic.

1— . 2VE(Iyy’5i+1)7VE(z’y75i).

(46)

V. EXPERIMENTAL RESULTS

In this section, the proposed method with the intermedi-
ate format and the conventional method [1] with floating-
point numbers were compared. The peak signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM) [21] of the
resulting LDR images were measured to evaluate the accuracy
of the proposed method. Moreover, the memory space and
processing time comparisons between the methods were also
performed. The 32 HDR images in the RGBE format, 42 HDR
images in the OpenEXR format, and 74 HDR images in the
long-integer (16-bit) format were used in these experiments.
The conventional method was executed with 64-bit floating-
point arithmetic. On the other hand, the proposed method was
executed with 32-bit fixed-point arithmetic. All floating-point
numbers were computed and stored in the IEEE754 double-
precision (64-bit) format. The parameters ¢ = 8, ¢ = 0.05,
and o = 0.5 were used.

A. Tone Mapped LDR Image Quality

Table I shows the maximum, minimum, and average PSNR
and average SSIM. In all cases, high PSNR and SSIM values
were obtained in the proposed method. It was confirmed that
effects of the errors due to fixed-point arithmetic on the image
quality were sufficiently small. Moreover, the method offered
high quality LDR images with various HDR image formats.
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TABLE I
THE MAXIMUM, MINIMUM, AND AVERAGE PSNR AND THE AVERAGE
SSIM OF THE METHODS.

PSNR [dB] [ SSIM
Maximum | Minimum Average
RGBE 54.36 46.56 50.52 | 0.9992
OpenEXR 61.08 39.95 51.48 | 0.9991
Long-integer 59.04 43.63 52.27 | 0.9989
TABLE II

THE MEMORY SPACE OF THE CONVENTIONAL METHOD [1] AND THE
PROPOSED METHOD.

The data used in Memory Space [bits]
the methods Conventional [1] Proposed
HDR RGB Value M x N x 192 M x N x 48
World Luminance M x N x 64 M x N x 16
Geometric Mean 64 16
Scaled Luminance M x N x 64 M x N x 16
Display Luminance M x N x 64 M x N x 16
Gaussian Filter A x B x 64 AXx B x 16
Conventional 238.9
Proposed 153.4
6 56 160 1;0 260 230 300

Processing time [s]

Fig. 3. The processing time of the proposed method and the conventional
method [1].

B. Memory Space

Table IT shows the memory space of each calculation with
M x N sized HDR image and A x B sized Gaussian filter. It
indicates that the proposed method reduces memory resources
compared to the conventional method [1]. The memory space
of the proposed method is 75% less than the conventional
method [1].

C. Comparison of the Processing Time

This experiment applied tone mapping for an HDR im-
age with 346 x 512 pixels in the OpenEXR format using
the proposed method with fixed-point arithmetic and the
conventional method [1] with floating-point arithmetic. The
experimental environment was with Marvell PXA270 ARM
Processor 624MHz and 128MB RAM. Note that this processor
does not have a FPU.

Figure 3 compares the processing time of the methods. The
proposed method was 1.6 times faster than the conventional
method. Therefore, this experiment confirmed that the pro-
posed method reduced the computational cost by using fixed-
point arithmetic.

VI. CONCLUSION

This paper proposed a local TMO with fixed-point arith-
metic and low-memory. The proposed method processes the
exponent part and the mantissa part of an HDR image sep-
arately as two 8-bit integer numbers; the numerical range
in the tone mapping process is greatly reduced. From this,
the method can be implemented with fixed-point arithmetic
and low-memory. The experimental results confirmed that
the method reduces the memory and computational cost, and
offers high quality of tone mapped images comparable to the
conventional method.

REFERENCES

[1] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, ‘“Photographic Tone
Reproduction for Digital Images,” ACM Trans. Graphics, Vol.21, No.3,
p.267-276, Jul. 2002.

[2] E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, W. Heidrich, and K.
Myszkowski, “High Dynamic Range Imaging - Acquisition, Display and
Image based Lighting,” Morgan Kaufmann, 2010

[3] F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive logarithmic

mapping for displaying high contrast scenes,” Computer Graphics Forum,

Vol.22, p.419-426, 2003.

R. Fattal, D. Lischinski, and M. Werman, “Gradient Domain High

Dynamic Range Compression,” ACM Trans. Graphics, Vol.21, No.3,

pp.249-256, July. 2002.

[5] M. Iwahashi and H. Kiya, “Efficient Lossless Bit Depth Scalable Coding
for HDR Images,” Proc. APSIPA ASC, n0.0S.49-IVM.17-5, Dec. 2012.

[6] M. Iwahashi and H. Kiya, “Two Layer Lossless Coding of HDR Images,”
Proc. IEEE ICASSP, pp.1340-1344, May 2013.

[71 R. Xu, S. N. Pattanaik, and C. E. Hughes, “High-Dynamic-Range Still
Image Encoding in JPEG2000,” IEEE Trans. Computer Graphics and
Applications, Vol.25, No.6, pp.57-64, Nov. 2005.

[8] T. Murofushi, M. Iwahashi, and H. Kiya, “An Integer Tone Mapping
Operation for HDR Images Expressed in Floating Point Data,” Proc. IEEE
ICASSP, pp.2479-2483, May 2013.

[9] T. Murofushi, T. Dobashi, M. Iwahashi, and H. Kiya, “An Integer Tone
Mapping Operation for HDR Images in OpenEXR with Denormalized
Numbers,” Proc. IEEE ICIP, no.TEC-P10.6, Oct. 2014.

[10] T. Dobashi, T. Murofushi, M. Iwahashi, and H. Kiya, “A Fixed-Point
Tone Mapping Operation for HDR Images in the RGBE Format,” APSIPA
ASC 2013, n0.0S.37-IVM.16-4, Nov. 2013.

[11] T. Dobashi, A. Tashiro, M. Iwahashi, and H. Kiya, “A fixed-point
implementation of tone mapping operation for HDR images expressed
in floating-point format,” APSIPA Trans. Signal and Info. Process., vol.3,
no.ell, pp.1-11, Oct. 2014.

[12] T. Dobashi, M. Iwahashi, and H. Kiya, “A Unified Tone Mapping
Operation for HDR Images Including Both Floating-Point and Integer
Data,” LNCS, Y. -S. Ho, J. Sang, Y. M. Ro, J. Kim, and F. Wu, Eds.
Springer-Verlag, vol.9314, pp.321-333, Sep. 2015.

[13] “Information technology - Microprocessor Systems - Floating-Point
arithmetic,” ISO/IEC/IEEE 60559, 2011.

[14] T. Viitanen, P. Jaaskelainen, O. Esko, and J. Takala, “Simplified Floating-
point Division and Square Root,” Proc. IEEE ICASSP, pp.2707-2711,
May 2013.

[15] C. H. Lampert, and O. Wirjadi, “Anisotropic Gaussian Filtering Using
Fixed Point Arithmetic,” Proc. IEEE ICIP, pp.1565-1568, Oct. 2006.
[16] K.J. Hass, “Synthesizing Optimal Fixed-Point Arithmetic for Embedded

Signal Processing,” Proc. IEEE MWSCAS, pp.61-64, Aug. 2010.

[17] M. Slomp, and M. M. Oliveria, “Real-Time Photographic Local Tone
Reproduction Using Summed-Area Tables,” Computer Graphics Interna-
tional, pp.82-91, 2008.

[18] Q. Tian, J. Duan, and G. Qiu, “GPU-accelerated local tone-mapping for
high dynamic range images,” Proc. IEEE ICIP, pp.377-380, Oct. 2012.

[19] G. Ward, “Real Pixels,” Graphics Gems 2., pp.80-83, San Diego, CA,
USA: Academic Press, 1992.

[20] F. Kainz, R. Bogart, and D. Hess, “The Openexr Image File Format,”
ACM SIGGRAPH Technical Sketches, 2003.

[21] Z. Wang, A. C. Bovik, H. R. Seikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Processing, Vol.13, No.4, pp.600-612, Apr. 2004.

[4

—

937



