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ABSTRACT

Source camera identification methods aim at identifying the
camera used to capture an image. In this paper we developed
a method for digital camera model identification by extracting
three sets of features in a machine learning scheme. These
features are the co-occurrences matrix, some features related
to CFA interpolation arrangement, and conditional probabil-
ity statistics. These features give high order statistics which
supplement and enhance the identification rate. The method is
implemented with 14 camera models from Dresden database
with multi class SVM classifier. A comparison is performed
between our method and a camera fingerprint correlation-
based method which only depends on PRNU extraction. The
experiments prove the strength of our proposition since it
achieves higher accuracy than the correlation-based method.

Index Terms— Camera identification, Co-occurrences,
CFA interpolation, Conditional Probability, SVM.

1. INTRODUCTION

Source camera identification has recently received a wide at-
tention due to its important role in security and legal issue. It
is the process of determining which camera device or model
has been used to capture an image. The image acquisition
process involves many steps inside camera device: lens sys-
tem, filters, Color Filter Array (CFA), imaging sensor, and
digital image processor. All these steps add artifacts to the
image content which will provide different features for the
identification process.

As a relation to prior work, researchers have proposed to
use these artifacts to collect features and treat them in a ma-
chine learning approach [1]. Kharrazi et al. [2] used three
sets of features to perform camera model identification. The
34 proposed features are color features, Image Quality Met-
rics (IQM), and wavelet domain statistics. Celiktutan et al. [3]
used a subset of Kharrazi’s feature sets to identify the source
cell-phone camera. Then, they added the features of binary
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Table 1. A comparison between feature based camera identi-
fication methods.

Camera Iden. No.of No.of
Method Features Features Models

Kharrazi et al. Color features, 34 5
(2004) [2] Image Quality Matrices,

Wavelet features
Celiktutan et al. Image Quality matrices, 592 16

(2008) [3] Wavelet features,
Binary Similarity Measures

Filler et al. Statistical moments, 28 17
(2008) [4] Block covariance,

Cross-correlation of CFA,
Cross-correlation of linear pattern

Gloe et al. Color features, 82 26
(2012) [5] Image Quality Matrices,

Wavelet features
Xu and Shi Local Binary Patterns 354 18
(2012) [6]

Wahab et al. Conditional Probability 72 4
(2012) [7]

Marra et al. Spam of Rich models 338 10
(2015) [8]

similarity measures to the previous feature sets to get 592 fea-
tures.

Filler et al. [4] introduced a camera model identification
method using 28 features related to statistical moments and
correlations of the linear pattern. Gloe et al. [5] used Khar-
razi’s feature sets with extended color features to produce 82
features. Xu and Shi [6] used 354 Local Binary Patterns as
features. Local binary patterns capture inter-pixel relations
by thresholding a local neighborhood at the intensity value of
the center pixel into a binary pattern.

Wahab et al. [7] used the conditional probability as a sin-
gle feature set to classify camera models. The 72 conditional
probability features were obtained using the coefficients of
8 × 8 DCT transform. Marra et al. [8] gathered 338 SPAM
features from the rich models based on co-occurrences matri-
ces of image residuals.

Other methods deal with camera identification but far
from feature extraction and machine learning. Bayram et
al. [9] explored the CFA interpolation process to determine
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the correlation structure present in each color band which can
be used for image classification. The main assumption is that
the interpolation algorithm and the CFA filter pattern of each
camera model is somewhat different from others, which will
result in distinguishable correlation structures in the captured
images.

A reliable one for identifying source camera based on sen-
sor pattern noise is proposed by Lukas et al. [10]. PRNU can
be used as fingerprint for uniquely identifying sensors. Choi
et al. [11] proposed to use the lens radial distortion as a fin-
gerprint to identify source camera model. Each camera model
expresses a unique radial distortion pattern that helps on its
identification.

Dirik et al. [12] proposed a device identification based on
sensor dust in digital single lens reflex cameras (DSLR). Sen-
sor dust patterns are used as artifacts on the captured images
to identify the camera device. Table 1 shows the most known
methods for camera identification based machine learning and
feature extraction.

Our contribution is to use a bigger set of features in order
to better describe the statistics (and that is what characterizes
the proposed method). We extract a vector of 10932 features
which can be considered as a huge number compared to those
of the methods mentioned in Table 1.

The rest of this paper is organized as follows. Section 2
explains the correlation based method. Section 3 presents all
the details of our method and feature extraction steps. In Sec-
tion 4, we describe the experiments and the results. Finally,
Section 5 concludes this paper and presents some perspec-
tives.

2. CORRELATION BASED METHODS

Sensor pattern noise has drawn much attention due to its fea-
sibility in identifying camera models of the same brand, and
individual devices of the same model. The PRNU is unique
to each sensor and is stable over time. By correlating the
noise extracted from a query image against the known refer-
ence pattern, or PRNU, of a given camera, we can determine
whether that camera was used to originally capture the query
image. The reference pattern of a camera is first extracted
from a series of images taken from known camera device.
The reference pattern is then used to detect whether the cam-
era used to generate the reference pattern was used to capture
an unknown source image.

Generally, for each image I , the residual noise is extracted
by subtracting the denoised version of the image from the im-
age itself as follows:

N = I − F (I), (1)

where F (I) is the denoised image, and F is a denoising filter.
Wavelet based denoising filter is recommended and it is used
in most cases [13].

Fig. 1. The correlation based scheme

In order to extract the fingerprint of a camera, multiple im-
ages are denoised and averaged. At least 50 images are used
to calculate the reference pattern Kd [13] of a known camera
device D as in Equation 2.

Kd =

∑n
i=1(NiIi)∑n

i=1 I
2
i

. (2)

A common approach to perform a comparison is to com-
pute the Normalized Cross-Correlation which measures the
similarity between the reference pattern Kd and the esti-
mated noise N of an image under test which is of unknown
source [13]. Normalized Cross-Correlation is defined as:

ρ(N,Kd) =
(N −N).(Kd −Kd)

‖N −N‖.‖Kd −Kd‖
. (3)

Where N and Kd are the means of N and Kd, respectively.
Fig.1 illustrates the steps related to correlation based method.

3. PROPOSED FEATURE BASED METHOD

In this paper, we extract features from the residual noise N .
After the image is decomposed into its three color channels,
the noise residual N is extracted by subtracting the denoised
version of the image I from the image itself as in Equation
1. For the denoising process, a wavelet based denoising filter,
F (I), is used based on a Wiener filtering of each wavelet sub-
band for each channel as in [10].

Computing the linear pattern L, a periodic signal of the
pattern noise, allows to suppress all artifacts produced by
color interpolation and JPEG compression [13]. L is ob-
tained by subtracting the average row and average column
from each row and column respectively of N from each color
channel separately [13]. This gives three linear patterns cor-
responding to each color channel, noted Lr, Lg and Lb for
red, green, blue channels respectively. The three linear pat-
terns are combined together by using the conversion formula
from RGB to gray-scale as follows.

LP = 0.3.Lr + 0.6.Lg + 0.1.Lb. (4)
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Three sets of features will be extracted, co-occurrences ma-
trix, color dependencies, and conditional probability. Co-
occurrences matrix will be extracted from LP by calculating
the different statistical relationships among neighboring pix-
els. The second features set, related to CFA arrangement, cal-
culates the local dependencies and periodicity among neigh-
boring pixels. The third features set is the conditional proba-
bility features which will be calculated from the original im-
ages by examining the absolute values of three selected coef-
ficients in 8×8 DCT block. The following three sub-sections
describe the theoretical part of the three features sets.

3.1. Co-occurrences Matrix

Recently rich models approach and co-occurrences matrix
have been widely used in forensics applications [8, 14, 15].
The co-occurrences are a very good way to describe high or-
der statistics of neighboring data. The co-occurrences feature
vector is made of joint probability distributions of neighbor-
ing residual samples. In this work, we used the linear pattern
of the noise residual obtained from Equation 4 as input to rich
models. We use four-dimensional co-occurrences matrices
formed by groups of four horizontally and vertically adjacent
samples after they were quantized and truncated as follows:

R← truncT (round(LP /q)), (5)

where truncT is a function to minimize the residual range
with T ∈ {−T, ..., T}, round(x) gives the nearest integer
value of x, LP is the linear pattern of the noise residual,
and q ∈ {1, 1.5, 2} is the quantization step. The final co-
occurrences matrix will be constructed from horizontal and
vertical co-occurrences of four consecutive values from R.
The horizontal co-occurrence matrix Ch

d is computed as fol-
lows [16]:

Ch
d = 1

Z |{(i, j) | Ri,j = d1, Ri,j+1 = d2, Ri,j+2 = d3, Ri,j+3 = d4}|, (6)

where Z is the normalization factor, with Ri,j ∈ N is the
coefficient from the matrix R at position (i, j) ∈ {1, ..., n}2,
d = (d1, ..., d4) ∈ {−T, ..., T}4 with T = 2.

We can compute the vertical co-occurrences matrix equiv-
alently.

3.2. Color Dependencies

The CFA pattern and the way of colors interpolation leave
some periodic patterns which are important to characterize
the camera models [9]. In this section, we will explain the
set of features related to CFA arrangement. From the linear
patterns of the noise residual Lr, Lg , and Lb, we compute
local dependencies and periodicity among neighboring sam-
ples. The normalized cross-correlation, explained in Equation
7, is computed between the estimated linear pattern from the
noise residual of the three color channels and their shifted ver-
sion as in [4].

For each color channel pair (A1, A2),A1, A2 ∈ {Lr, Lg, Lb}
and shift 41 ∈ {0, ..., 3}, 42 ∈ {0, ..., 3}. This step results
in 96 features which are the result of six combinations of color
channels by 4× 4 shifts of41 and42.

ρ(A1, A2,4) =

∑
i,j(A1i,j −A1)(A2i−41,j−42

−A2)√∑
i,j(A1i,j −A1)2

∑
i,j(A2i−41,j−42

−A2)2
,

(7)
where ρ is the normalized cross correlation, 4 = [41

42]
T is the 2D shift, A1 andA2 are sample means calculated

from matrices A1 and A2 respectively.

3.3. Conditional Probability

Conditional probability features (CP) were introduced in
camera identification by Wahab et al. [7]. A number of CP
features can be obtained by examining the absolute values
of three selected block DCT coefficients at different loca-
tions. For the usual 8 × 8 DCT transform, we picked three
DCT coefficients from the 4 × 4 left upper sub-block be-
cause most non-zero coefficients are in that region. Given the
three relative positions r, s, and t in a DCT block such that
{r, s, t} ∈ {1, ..., 4}× {1, ..., 4}, we compute the conditional
probability as follows:

Prob(Yi|Xi) =
Prob(XiYi)

Prob(Xi)
, (8)

knowning thatXi ∈ {X1, X2, X3} and Yi ∈ {Y1, Y2, Y3} are
defined such as:

X1 = {value at position r < value at position s},
X2 = {value at position r > value at position s},
X3 = {value at position r = value at position s},

Y1 = {value at position t < value at position s},
Y2 = {value at position t > value at position s},
Y3 = {value at position t = value at position s},

(9)

Eight different arrangements of r, s, and t will be exam-
ined over nine events resulting in 72 features.

4. EXPERIMENTS AND EVALUATION

In order to assess the performance of our method, we carried
out some experiments on a set of camera models from the
Dresden image database [17]. It is one of the most widespread
database dedicated to forensics applications. For the experi-
mental phase, 14 camera models with single device from each
model were used as in Table 3. An image is decomposed into
its three color channels (R, G, B). For each camera model we
used 200 full size images. Noise residual is extracted from all
images by applying wavelet denoising filter.
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Table 2. Identification accuracy of the proposed method and the correlation based method for 14 chosen camera models.

Camera Model CM1 CM2 CM3 CM4 CM5 CM6 CM7 CM8 CM9 CM10 CM11 CM12 CM13 CM14
Correlation method% 98 98 100 96 99 98 97 100 96 98 97 96 97 95
Proposed method% 99.3 98.6 100 99.9 98.7 99.9 98.1 98 99.6 98.2 99.4 98.9 97.7 96.2

Table 3. Camera models used from Dresden database

Brand/Make Model Resolution
Agfa Photo (CM1) DC-733s 3072x2304
Agfa Photo (CM2) DC-830i 3264x2448
Agfa Photo (CM3) Sensor 530s 4032x3024

Canon (CM4) Ixus 55 2592x1944
Fujifilm (CM5) FinePix J50 3264x2448
Kodak (CM6) M1063 3664x2748
Nikon (CM7) D200 Lens A/B 3872x2592

Olympus (CM8) M1050SW 3648x2736
Panasonic (CM9) DMC-FZ50 3648x2736
Praktica (CM10) DCZ 5.9 2560x1920
Samsung (CM11) L74wide 3072x2304
Samsung (CM12) NV15 3648x2736

Sony (CM13) DSC-H50 3456x2592
Sony (CM14) DSC-W170 3648x2736

Fig. 2. Comparison of the identification results.

Table 4. Test results for images from Flickr data set.
Camera Make/Model No.Images Identification

Canon IXUS 55 97 99.1%
Fujifilm FinePix J50 74 98.7%

Table 5. The total accuracy for the compared methods.
Camera identification method Accuracy

Correlation based method 97.5%
Proposed method 98.75%

SVM classifier is trained on 10932 features coming from
three sets. Two feature sets are extracted from linear pattern
of the noise residual for each image in the data set. The first

set is the co-occurrences matrix which consists of 10764 fea-
tures. While the second set consists of 96 features from CFA
interpolation dependencies. The third features set is extracted
by computing the conditional probability of the 8 × 8 DCT
transform coefficients of the original images and resulting in
72 features, see Section 3.

The method of min-max scaling was used for feature nor-
malization. In this approach, the features will be re-scaled, to
a specific range [0,1]. For the classification, LIBSVM pack-
age with multi-classification was used [18] with the Radial
Basis Function (RBF) and v-fold cross validation scheme.
The kernel parameters values were for γ = 2−4 and cost pa-
rameter C = 2048 after examining a grid search over a range
of values. We run the training procedure 10 times then aver-
aging the results. Each time, the training and testing data sets
are selected randomly.

We used 100 images for the training and another 100
for the test. The proposed method achieved a total iden-
tification accuracy of 98.75% over 14 camera models as
shown in Table 2. We recorded a perfect identification
for Agfa − Sensor530s and very high performance for
Canon − Ixus55, and Kodak −M1063. We noticed that
the two models of Sony recorded the lowest rates due to the
in-camera processes they achieve.

In order to test the method against the high dimension-
ality problem, we performed an additional experiment. Two
image subsets were downloaded from the most wide web
database ”Flickr”. The images of two camera models
Canon − Ixus − 55, and Fujifilm − FineP ix − J50
are used only to test the network which was trained with the
previous data set ”Dresden”. We achieved an identification
accuracy 99.1%, 98.7% respectively as shown in Table 4.
These results prove the robustness of the proposed method
against the curse of dimensionality.

For comparison, we implemented the method of the cor-
relation based sensor pattern noise for camera identification,
explained in Section 2. This method depends on extracting
the fingerprint of the camera which can be estimated by av-
eraging a set of images. Normalized correlation is applied
between the fingerprint and an image under test to investigate
whether this image came from this camera or not. For each
camera model, we used 100 images to estimate the fingerprint
and we left the rest 100 images for the test. This results in
97.5% as a total identification accuracy as in Table 2. The bar
chart in Figure 2 is showing the comparative accuracy for the
two methods in terms of each camera model separately. In Ta-
ble 5, we can see that the proposed method performs higher
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than the correlation based method since it achieves 98,75%
while the compared method only achieves 97.5%.

5. CONCLUSION

This paper contributes in identifying camera models based
on feature extraction and machine learning. The objective in
adding this big number of features is to allow enhancing the
identification rate by providing strong statistic tool.

The algorithm is composed of extracting three sets of fea-
tures. The noise residual is obtained by applying wavelet de-
noising filter. Images from 14 camera models were used from
the Dresden database and classified by SVM classifier.

The experimental results show that the proposed method
gives very high identification accuracy since it provides an
identification rate of 98.75% in comparison with the correla-
tion based method which achieved 97.5%. The problem of
dimensionality was examined by testing images from another
database.

The future work will include using a large scale database
with more camera models, so as the usage of multiple devices
of the same model.
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