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ABSTRACT

While most of research in Compressive Sensing (CS) has
been focused on reconstruction of the sparse signal from very
fewer samples than the ones required by the Shannon-Nyquist
sampling theorem, recently there has been a growing interest
in performing signal processing directly in the measurement
domain. This new area of research is known in the literature
as Compressive Signal Processing (CSP). In this paper, we
consider the detection problem using a reduced set of mea-
surements focusing on the Energy Detector (ED), which is the
optimal Neyman-Pearson (NP) detector for random signals in
Gaussian noise. In particular, we provide simple closed form
expressions for evaluating the detection performance of ED
when considering compressive measurements. The resulting
equations reflect the loss due to CS and allow to determine
the minimum number of samples to achieve certain detection
performance.

Index Terms— Compressive Signal Processing, Compres-
sive Sensing, Energy Detection

1. INTRODUCTION

The concept of Compressive Sensing (CS) [1–3] has attracted
considerable research interest over the past years in the signal
processing community. CS is a new signal processing tech-
nique for sampling analog signals which seeks to minimize
the collection of redundant data in the acquisition step. The
essence of this reduction of data is based on the sparsity or the
sparse representation present in many common signals. The
traditional CS approach is to recover the exact signal from
its compressive measurements. The recovery or reconstruc-
tion process usually involves some kind of optimization pro-
cedure [4, 5]. However, some signal processing applications
like signal estimation, detection and classification, in which
the main task is to solve inference problems, do not require
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the complete signal recovery. This has motivated a growing
interest in working directly in the compressed domain, which
has obvious advantages in terms of complexity in comparison
with the traditional CS approach since the reconstruction step
is omitted. This new area of research is known in the literature
as Compressive Signal Processing (CSP) [6, 7].

In this paper, we focus on the compressive signal detection
problem. Signal detection is a well-known problem in sig-
nal processing, which involves deciding whether a particular
signal is present or not from the observed data. Compressive
signal processing has been applied to the detection problem
in [6, 8–10]. The most relevant work is [6], where theoreti-
cal bounds and probability expressions are provided for the
detection of sparse deterministic signals. Deterministic sig-
nals are also considered in [8], for which the matched filter
technique is the optimal Neyman-Pearson (NP) detector [11].
In [9], the compressive sensing detection of stochastic signals
in a noisy environment is considered. In particular, the op-
timal projection or sampling matrix is derived in such a way
that the classification error is minimized. An Energy Detec-
tor (ED) applied directly to the compressed signal is proposed
in [10]. However, [10] is specific to Ultra-WideBand (UWB)
Pulse Position Modulation (PPM) signals and only provides
the corresponding bit error probability expression.

In contrast to previous works, we focus on the compressive
detection of stochastic signals. For this, we follow the same
philosophy as in [6] and focus on the NP setup, in which the
probability of detection is maximized for a given probability
of false alarm. As shown in [11], the NP detector (also known
as likelihood-ratio test) for stochastic signal detection in the
presence of White Gaussian Noise (WGN) is the ED. There-
fore, we derive the compressive test statistic for ED and we
formulate the corresponding equations related to its detection
performance. In this context, the work in [12] deserves spe-
cial attention, since it deals with a similar problem for the case
of the NP detector. However, in [12], the Chi-squared distri-
bution of the decision statistic is used to derive the operating
characteristics of the NP detector resulting in cumbersome
equations. Here, we make use of the central limit theorem
to simplify the expressions of the probability of detection and
the probability of false alarm for the CS-based ED which are
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expressed by a singleQ-function. The resulting equations can
be used to easily quantify the effect of the reduced number of
samples and to determine the minimum number of samples
needed to achieve certain detection performance.

The remainder of this paper is structured as follows. In
Section 2, the conventional ED is reviewed. In Section 3,
we provide background on CS and introduce the compressive
ED formulation. Section 3 also includes a comparatives dis-
cussion of the results obtained for the conventional and the
CS-based ED. Supporting results are provided in Section 4,
and Section 5 states the conclusion.

2. CONVENTIONAL ENERGY DETECTION

Signal detection is a binary decision problem [11] that can be
formulated as follows:{

H0 : x = w,
H1 : x = s + w,

(1)

where x ∈ RN denotes the observed data, s ∈ RN denotes the
signal to be detected and w ∼ N

(
0, σ2

wIN
)

is the Additive
White Gaussian Noise (AWGN) independent of the signal s.
The signal s is assumed to be a Gaussian random process with
zero mean and variance σ2

s , i.e., s ∼ N
(
0, σ2

sIN
)
.

The detection algorithm has to decide if the signal s is
present (H1) or not (H0) from the observation x. For this,
a test statistic T (x) is computed from the observed data and
compared to a threshold η. Let P (Hi;Hj) indicate the prob-
ability of decidingHi whenHj is true. The probability of the
algorithm to correctly detecting s is defined as Probability of
Detection and is given by the following expression:

PD = P (H1;H1) = P (T (x) > η|H1) . (2)

Similarly, the Probability of False Alarm, PFA, is the prob-
ability to falsely declaring the presence of the signal to be
detected, and is given by

PFA = P (H1;H0) = P (T (x) > η|H0) . (3)

Clearly, PD and PFA depend on each other. Based on the
NP theory, if PFA is restricted to a maximum value λ, then
the test statistic that maximizes PD is the likelihood-ratio test
of the form

T (x) =
f1(x)
f0(x)

H0

≶
H1

η, (4)

where fi(x) denotes the Probability Density Function (PDF)
of x under hypothesis Hi. It is shown in [11] that the test
statistic T (x) obtained from (4) is proportional to ‖x‖22 =
xT x, which is the energy of the observed signal.

2.1. Distribution of the Test Statistic and Detection Per-
formance

The test statistic T (x) is a sum of N squares of independent
Gaussian random variables. As a consequence, T (x) follows
a central Chi-square distribution under hypothesis H0 and
non-central Chi-square distribution under hypothesisH1 [13].
Using the central limit theorem, for large N we have the fol-
lowing [13, 14],{
H0 : T (x) ∼ N

(
Nσ2

w, 2Nσ
4
w

)
,

H1 : T (x) ∼ N
(
N(σ2

w + σ2
s), 2N(σ2

w + σ2
s)

2
)
.

(5)

Therefore, from (2), (3) and (5) we obtain the following ex-
pressions:

PD = Q
(
η −Nσ2

w(1 + γ)√
2Nσ2

w(1 + γ)

)
,

PFA = Q
(
η −Nσ2

w√
2Nσ2

w

)
,

(6)

where Q(·) denotes the complementary distribution function
of the standard Gaussian and γ is the Signal-to-Noise Ratio
(SNR) defined as σ2

s

σ2
w

.
From (6), and setting the PFA = λ, we can rewrite PD as

PD = Q

(
1

1 + γ

[
Q−1 (λ)− γ

√
N

2

])
. (7)

Finally, the minimum number of samples required to guar-
antee a minimum PD = β is

Nmin =

⌈
2

[
1

γ

(
Q−1 (λ)− (1 + γ)Q−1 (β)

)]2⌉
. (8)

3. PROPOSED COMPRESSIVE ENERGY
DETECTION

We now consider the problem of detecting the signal s from
the observation of y = Φx, where Φ ∈ RM×N , being M <
N . This corresponds to the conventional CS notation for the
acquisition of sparse signals. The ratio ρ = M/N is known
as the compressive ratio. The binary decision problem can be
formulated as, {

H0 : y = Φw,
H1 : y = Φ (s + w) .

(9)

The distribution of y in (9) follow a zero-mean Gaussian mul-
tivariate distribution with covariance matrix equal to σ2

wΦΦT

for H0 and
(
σ2
s + σ2

w

)
ΦΦT for H1. Therefore, we have the

following probability density functions for the hypothesesH0
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andH1,
H0 : f0(y) =

exp
(
− 1

2 yT (σ2
wΦΦT )

−1y
)

√
|σ2

wΦΦT |(2π)M
,

H1 : f1(y) =
exp
(
− 1

2 yT ((σ2
s+σ

2
w)ΦΦT )

−1y
)

√
|(σ2

s+σ
2
w)ΦΦT |(2π)M

.

(10)

In this work, we focus on a particular structure for the mea-
surement matrix Φ, which is detailed in the following as-
sumptions.

Assumption 1 The measurement matrix Φ satisfies ΦΦT =
1
ρ IM . In other words, the rows of the measurement matrix are
orthogonal and its columns have unit norm.

Note that Assumption 1 is approximately satisfied by ma-
trices Φ whose entries are zero-mean i.i.d. random variables
with variance 1/M , when N →∞. Assumption 1 is satisfied
as well by the measurement matrices employed by the widely
used multi-coset sampler [15, 16].

According to (10) and making use of Assumption 1, the
corresponding NP decision statistic is given by,

T (y) =
[

σ2
w

σ2
s + σ2

w

]M/2

exp

((
σ2
s

2 1
ρσ

2
w (σ2

s + σ2
w)

)
‖y‖22

)
.

(11)
Clearly, in (11) it is shown that the optimal detector is pro-
portional to the energy of the compressed signal, i.e. T (y) =
‖y‖22 = yT y. Therefore, defining a new threshold η′, we have
T (y)≶H0

H1
η′.

3.1. Distribution of the Test Statistic and Detection Per-
formance

For convenience let us rewrite the test statistic T (y) as fol-
lows:

T (y) =
M−1∑
m=0

y2(m) =

M−1∑
m=0

[
N−1∑
n=0

ϕ(m,n)x(n)

]2
(12)

where y(m), x(n) and ϕ(m,n) denote the entries of y, x and
Φ, respectively. It is clear from (12) that the distribution of
T (y) depends on the distribution of ϕ(m,n). Here, we fo-
cus on measurement matrices Φ whose entries are zero-mean
i.i.d. random variables with variance 1/M .

As for the conventional energy detector, we can apply the
central limit theorem and, for large N we have,{
H0 : T (y) ∼ N

(
Nσ2

w, 2N( 2+NM )σ4
w

)
,

H1 : T (y) ∼ N
(
N(σ2

w + σ2
s), 2N( 2+NM )(σ2

w + σ2
s)

2
)
.

(13)
Assuming that 2 � N , we can do the following approxima-
tion: H0 : T (y) ≈ N

(
Nσ2

w, 2N( 1ρ + 1)σ4
w

)
,

H1 : T (y) ≈ N
(
N(σ2

w + σ2
s), 2N( 1ρ + 1)(σ2

w + σ2
s)

2
)
.

(14)

It can be observed from (14) that the mean of T (y) under hy-
pothesis H0 and H1 is not affected by the compressive sam-
pling. The effect of working with a reduced number of mea-
surements is reflected in the variance, which increases by a
factor of 1

ρ + 1 with respect to the variance obtained for the
conventional case.

Therefore, using (2), (3) and (14) we obtain the following
expressions:

PD = Q

 η′ −Nσ2
w(1 + γ)√

2N( 1ρ + 1)σ2
w(1 + γ)

 ,

PFA = Q

 η′ −Nσ2
w√

2N( 1ρ + 1)σ2
w

 .

(15)

Setting the value of PFA = λ, we obtain a certain value of η′

from the PFA expression in (15), Substituting the value of η′

in the PD expression in (15), we obtain

PD = Q

(
1

1 + γ

[
Q−1 (λ)− γ

√
N

2( 1ρ + 1)

])
. (16)

3.2. Comparative Discussion

Comparing (7) with (16), it is clear that the number of sam-
ples is an important parameter that determines the probability
of detection. Due to the monotonically decreasing property
of function Q (·), it can be seen that the probability of detec-
tion of the conventional detector is equal or higher than that of
the compressive detector. In other words, PD deteriorates for
ρ < 1, which is the case when compressive sampling is ap-
plied. Unfortunately, theQ function is not a linear decreasing
function and the performance loss due to the reduced number
of samples depends on the SNR.

From (8), it is confirmed that the SNR is also another key
parameter in determining the probability of detection. En-
ergy detector requires more samples at very low SNR val-
ues [17]. Essentially, some values of probability of false
alarm and probability of detection can only be achieved at
very low SNR when a large number of samples is captured.
The consequences of this drawback are even worse in the CS
setting, where the number of measurements is reduced.

4. NUMERICAL RESULTS

The goal of this section is to illustrate the differences between
the conventional ED and the CS-based ED in different CS set-
tings with the help of numerical results. For the measurement
matrix Φ, we considered a matrix whose entries are zero-
mean i.i.d. gaussian random variables with variance 1/M .
Therefore, Assumption 1 holds true and the equations derived
in Section (3.1) apply.
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Fig. 1. Theoretical and empirical distributions of (a) T (x)
(conventional ED), and (b) T (y) with ρ = 0.25, for H0 and
H1, γ = −2 dB and N = 330.

First of all, we show that central limit theorem provides
good approximation for the distribution of T (x) and T (y).
To this end, in Fig. 1(a) and Fig. 1(b), we depicted the his-
tograms obtained from 10,000 Monte Carlo runs of T (x) and
T (y), for both hypotheses H0 and H1, for a particular ex-
ample with γ = −2 dB and ρ = 0.25 (for the compres-
sive case). The number of full measurement samples is set
to N = 2000. In Fig. 1, it is observed that both distributions
closely match the Gaussian approximations given in (5) and
(13) (also shown in the figure with red solid lines). The effect
of the compression is evident from Fig. 1, where the Gaussian
curves depicted in Fig. 1(b) are wider bell-shaped compared
to those in Fig. 1(a) due to the larger variance values.

Fig. 2 shows the PD versus SNR results when PFA =
10−3 for different compression rates when N = 800. As
predicted from (7) and (16), the ED performance degrades
as the number of measurements decreases. In particular, we
can note from Fig. 2 that the conventional ED provides a
PD = 0.77 for γ = −7dB, while the CS-based ED strategies
provide PD = {0.62, 0.41, 0.18} for ρ = {0.70, 0.50, 0.25},
respectively, for the same SNR value. The relation between
PD, ρ and γ is better illustrated in Fig. 3, where the value
of PD is depicted for values of γ ranging from −5 dB to 5
dB and for different values of ρ. Once again, the increase in
the detection probability is evident as we take more measure-
ments. However, we again note that the relation between the
compressive rate and PD can be significantly affected by the
SNR.

In Fig. 4, we illustrate the receiver operating characteristic
(ROC) curves, i.e., the relationship between PFA and PD for
certain values of SNR. For each compressive ratio, we depict
the ROC curves for γ = {−6,−8} dB and for two different
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Fig. 2. PD versus γ results when PFA = 10−3 and N = 800.
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Fig. 3. Effect of γ and ρ in PD (PFA = 10−3).

number of full measurement samples N = {500, 100}. We
show the theoretical ROC obtained from (15) together with
the empirical ROC obtained from 10,000 Monte Carlo runs. It
can be observed that the theoretical curves closely match the
ones obtained with simulations. Note that the minimum num-
ber of samples required for perfect detection, i.e., PD = 1 and
PFA = 0, when γ = −6 is around 3, 600 samples according
to (8). That explains why the ROC curves of Fig. 4(a) do not
touch the upper-left corner of the figure. The curves in Fig. 4
show that the detector performance progressively deteriorates
(i.e., approach the center of the figure) as ρ and γ decrease.

5. CONCLUSION

In this paper, we derived the NP detector for detecting a ran-
dom signal in the presence of AWGN by making use of com-
pressive measurements. We showed that the resulting de-
tector is an ED and, subsequently, we formulated the equa-
tions describing its detection performance using the simple
Q-function. We focused on the widely-used measurement
matrix whose entries are zero-mean i.i.d. random variables
with variance 1/M and we showed that the effect of the com-
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Fig. 4. ROC figures: (a) Conventional ED; (b) CS-based ED with ρ = 0.76; (c) CS-based ED with ρ = 0.52; (d) CS-based ED
with ρ = 0.24

pression is reflected on the variance of the test statistic’s dis-
tribution, which is higher that that of the conventional ED.
Numerical simulations support the theoretical results and con-
firm the loss due to the reduced number of samples.
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