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Abstract—In this paper, we derive two algorithms, namely
the Simple Set-Membership Affine Projection (S-SM-AP) and
the improved S-SM-AP (IS-SM-AP), in order to exploit the
sparsity of an unknown system while focusing on having low
computational complexity. To achieve this goal, the proposed
algorithms apply a discard function on the weight vector to
disregard the coefficients close to zero during the update process.
In addition, the IS-SM-AP algorithm reduces the overall number
of computations required by the adaptive filter even further by
replacing small coefficients with zero. Simulation results show
similar performance when comparing the proposed algorithm
with some existing state-of-the-art sparsity-aware algorithms
while the proposed algorithms require lower computational
complexity.

Index Terms—adaptive filtering, set-membership filtering,
sparsity, discard function, computational complexity.

I. INTRODUCTION

Adaptive filtering applied to signals originating from time-

varying systems find applications in a wide diversity of areas

such as communications, control, radar, acoustics, and speech

processing. Nowadays, it is well known that many types of

signal or system parameters admit sparse representation in a

certain domain. However, classical adaptive algorithms such as

the least-mean square (LMS), the normalized LMS (NLMS),

the affine projection (AP), and the recursive least squares

(RLS) do not take into consideration the sparsity in the signal

or system models.

Recently, it has been understood that by appropriately

exploiting signal sparsity, significant improvement in conver-

gence rate and steady-state performance can be achieved. As a

consequence, many extensions of the classical algorithms were

proposed aiming at exploiting sparsity. One of the most widely

used approaches consists in updating each filter coefficient

using a step-size proportional to its magnitude, which led

to the development of a family of algorithms known as

proportionate [1]–[5]. Another interesting approach to exploit

sparsity is to include a sparsity-promoting penalty function

into the original optimization problem of classical algorithms.

Within this approach, most algorithms employ the l1 norm

as the sparsity-promoting penalty [6], [7], but recently an

approximation to the l0 norm has shown some advantages [8]–

[11]. In addition, these two approaches were combined and

tested in [12], [13] yielding interesting results. Observe that

in all of the aforementioned approaches something is being

included/added to the classical algorithms, thus entailing an

increase in their computational complexity.

In this paper we use a different strategy to exploit sparsity.

Instead of including additional features in the algorithm, as the

techniques presented in the previous paragraph do, we actually

discard some coefficients, thus reducing the computational

burden. This idea is motivated by the existence of some un-

certainty in the coefficients in practical applications. Indeed, a

measured sparse impulse response of a system/signal presents

a few coefficients concentrating most of the energy, whereas

the other coefficients are close to zero, but not exactly equal

to zero [8]. Thus, if we have some prior information about

the uncertainty in those coefficients, then we can replace the

coefficients which are “lower than” this uncertainty with zero

(i.e., discard the coefficients) in order to save computational

resources.

In addition to this new way of exploiting sparsity, we

also employ the set-membership filtering (SMF) approach

[14], [15] in order to generate the Simple Set-Membership

Affine Projection (S-SM-AP) algorithm, which is essentially

the combination of the set-membership affine projection (SM-

AP) algorithm [16] with our strategy to exploit sparsity. The

SMF approach is used just to reduce the computational burden

even further, since the filter coefficients are updated only when

the estimation error is higher than the pre-determined upper

bound.

The rest of this paper is organized as follows. Section II

briefly describes the SMF concept. The proposed S-SM-AP

algorithm is derived in Section III. Simulations are presented

in Section IV and Section V contains the conclusions.

Notation: The real field is represented by R. The order of

the adaptive filter is denoted as N . Scalars are denoted by

lowercase letters. Boldface lowercase (uppercase) letters rep-

resent vectors (matrices). Superscript T represents transpose

operation.

II. SET-MEMBERSHIP FILTERING (SMF)

The purpose of the SMF is to obtain the system model

parameter w such that the magnitude of the estimation error

is upper bounded by a prescribed parameter γ ∈ R+. The

value of γ can change with the specific application. If γ is

suitably selected, then there are many valid estimates for w.

Suppose that S denotes the set of all possible input-desired

data pairs (x, d) of interest. Define the feasibility set Θ as

Θ =
⋂

(x,d)∈S

{w ∈ R
N+1 : |d−wTx| ≤ γ}. (1)

2016 24th European Signal Processing Conference (EUSIPCO)

978-0-9928-6265-7/16/$31.00 ©2016 IEEE 1798



2

Also, let’s define the constraint set H(k) consisting of all

vectors w such that their estimation errors at time instant k

are upper bounded in magnitude by γ, i.e.,

H(k) = {w ∈ R
N+1 : |d(k)−wTx(k)| ≤ γ}, (2)

where the quantities x(k), w, and d(k) are input vector, weight

vector, and desired signal, respectively. The membership set

ψ(k) is defined as

ψ(k) =

k
⋂

i=0

H(i). (3)

The idea of iterative techniques based on SMF is to adapt

the coefficient vector such that it will always remain within

the membership set, since this set converges to the feasibility

set as k → ∞. Due to practical constraints that prevent the

computation of ψ(k), we calculate a point estimate using, for

example, the information provided by the constraint set H(k)
like in the set-membership NLMS algorithm [14], or several

previous constraint sets as is done in the set-membership affine

projection algorithm [16].

III. A SIMPLE SET-MEMBERSHIP AFFINE PROJECTION

ALGORITHM

In Subsection III-A, we propose a Simple Set-Membership

Affine Projection (S-SM-AP) algorithm that exploits the spar-

sity of the involved system in order to obtain lower computa-

tional complexity than the existing sparsity-aware algorithms.

For this purpose, the strategy consists in not updating the

coefficients of the sparse filter which are close to zero. Then, in

Subsection III-B, we include a discussion of some character-

istics of the proposed algorithm. Finally, in Subsection III-C,

we introduce an improved version of the proposed algorithm

aiming at reducing computational burden even further.

A. Derivation of the S-SM-AP algorithm

Let us define the discard function fǫ : R → R for the

positive constant ǫ as follows

fǫ(w) =

{

w if |w| > ǫ

0 |w| ≤ ǫ
. (4)

That is, function fǫ discards the values of w which are close

to zero. The parameter ǫ defines what is considered as close to

zero and, therefore, should be chosen based on some a priori

information about the relative importance of a coefficient to

the sparse system. Figure 1 depicts the function fǫ(w) for

ǫ = 10−4. Note that the function fǫ(w) is not differentiable

at ±ǫ, however, we need to differentiate this function in order

to derive the S-SM-AP algorithm. To address this issue, we

define the derivative of fǫ(w) at +ǫ and −ǫ as equal to the

left and the right derivatives, respectively. Thus, the derivative

of fǫ(w) at ±ǫ is zero. Define the discard vector function

fǫ : R
N+1 → R

N+1 as fǫ(w) = [fǫ(w0), · · · , fǫ(wN )]T .

The S-SM-AP algorithm updates the coefficients whose

absolute values are larger than ǫ whenever the error is such

that |e0(k)| = |d(k)−wT (k)x(k)| > γ. Let ψL+1(k) denote

the intersection of the last L + 1 constraint sets and state
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Figure 1. Discard function fǫ(w) for ǫ = 10−4.

the following optimization criterion for the vector update

whenever w(k) 6∈ ψL+1(k)

min
1

2
‖fǫ(w(k + 1))−w(k)‖2

subject to

dap(k)−XT
ap(k)w(k + 1) = γ̄(k). (5)

where
dap(k) ∈ R

(L+1)×1 contains the desired output

from the L+ 1 last time

instants;

γ̄(k) ∈ R
(L+1)×1 specifies the point in

ψL+1(k);
Xap(k) ∈ R

(N+1)×(L+1) contains the corresponding

input vectors, i.e.,

dap(k) = [d(k) d(k − 1) · · · d(k − L)]T ,

eap(k) = [e0(k) e1(k) · · · eL(k)]
T ,

γ̄(k) = [γ0(k) γ1(k) · · · γL(k)]
T ,

Xap(k) = [x(k) x(k − 1) · · · x(k − L)],

(6)

with x(k) being the input-signal vector

x(k) = [x(k) x(k − 1) · · · x(k −N)]T (7)

and eap(k) = dap(k)−XT
ap(k)w(k) being the error vector.

In order to solve this optimization problem, we construct

the Lagrangian L as

L =
1

2
‖fǫ(w(k + 1))−w(k)‖2

+ λT
ap(k)[dap(k)−XT

ap(k)w(k + 1)− γ̄(k)], (8)

where λap(k) ∈ R
L+1 is a vector of Lagrange multipliers.

After differentiating the above equation with respect to w(k+
1) and setting the result equal to zero, we obtain

fǫ(w(k + 1)) = w(k) + F−1
ǫ (w(k + 1))Xap(k)λap(k), (9)

where Fǫ(w(k + 1)) is the Jacobian matrix of fǫ(w(k + 1)).
In Equation (9) by employing a similar strategy as the PASTd

(projection approximation subspace tracking with deflation)

[17], we replace fǫ(w(k+1)) and F−1
ǫ (w(k+1)) with w(k+

1) and F−1
ǫ (w(k)), respectively, in order to form the recursion,

then we obtain

w(k + 1) = w(k) + F−1
ǫ (w(k))Xap(k)λap(k). (10)
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If we substitute the above equation in the constraint relation

(5), then we will find λap(k) as follows

λap(k) = A(k)(eap(k)− γ̄(k)), (11)

where

A(k) = (XT
ap(k)F

−1
ǫ (w(k))Xap(k))

−1. (12)

Replacing (11) into (10) leads to the following updating

equation

w(k + 1) = w(k) + p(k), (13)

where

p(k) = F−1
ǫ (w(k))Xap(k)A(k)(eap(k)− γ̄(k)). (14)

Note that Fǫ(w(k)) is not an invertible matrix and, there-

fore, we apply the Moore-Penrose pseudoinverse (generaliza-

tion of the inverse matrix) instead of the standard inverse.

However, Fǫ(w(k)) is a diagonal matrix with diagonal entries

equal to zero or one. Indeed, for the components of w(k)
whose absolute values are larger than ǫ, their corresponding

entries on the diagonal matrix Fǫ(w(k)) are one, whereas

the remaining entries are zero. Hence, the pseudoinverse of

Fǫ(w(k)) is again Fǫ(w(k)). As a result, the update equation

of the S-SM-AP algorithm is as follows

w(k + 1) = w(k) + q(k), (15)

where

q(k) = Fǫ(w(k))Xap(k)B(k)(eap(k)− γ̄(k)), (16)

B(k) = [XT
ap(k)Fǫ(w(k))Xap(k)]

−1. (17)

Note that, in practice, we apply a regularization factor in (17)

in order to avoid numerical problems in the matrix inversion.

B. Discussion of the S-SM-AP algorithm

1) Computational Complexity: The update equation of the

S-SM-AP algorithm is similar to the update equation of the

SM-AP algorithm, but the former updates only the subset of

coefficients of w(k) whose absolute values are larger than

ǫ. As a result, the role of matrix Fǫ(w(k)) is to discard

some coefficients of w(k), thus reducing the computational

complexity when compared to the SM-AP algorithm.

The computational complexity for each update of the weight

vector of the SM-PAPA [4], the SSM-AP [8], and the proposed

S-SM-AP algorithms are listed in Table I. The filter order and

the memory length factors are N and L, respectively. It should

be noted that the number of operations in Table I are presented

for the full update of all coefficients. In other words, for the

S-SM-AP algorithm we have presented the worst case scenario

which is equivalent to setting ǫ = 0,1 while in practice we are

updating only the coefficients with absolute values larger than

a pre-determined positive constant. Also, it is notable that the

number of divisions in the S-SM-AP algorithm is less than the

SM-PAPA and SSM-AP algorithms. This is quite significant,

as divisions require more computational complexity than other

operations.

1In this case, the complexity of the S-SM-AP and SM-AP algorithms are
exactly the same.

2) Initialization: Unlike classical algorithms in which the

initialization of the weight vector is often chosen as w(0) = 0,

this same procedure cannot be applied to the proposed algo-

rithm. Indeed, for the S-SM-AP algorithm, each of the coeffi-

cients should be initialized as |wi(0)| > ǫ for i = 0, 1, . . . , N .

3) Relation with other algorithms: The similarities and

differences between the proposed algorithm and the SM-AP

algorithm were already addressed when we discussed the

complexity of these algorithms. Now, one should observe that

the update equation of the S-SM-AP algorithm is similar to

the one of the set-membership partial update affine projection

(SM-PUAP) algorithm [15], in which our matrix Fǫ(w(k)) is

replaced by a diagonal matrix C also with entries equal to 1

or 0, but there is no specific form to set/select C. Therefore,

the proposed algorithm can be considered as a particular

case of the SM-PUAP in which there is a mathematically

defined way (based on the sparsity of the unknown system)

to select the coefficients that are relevant and the ones that

will be discarded. Regarding the memory requirements of the

proposed algorithm, they are exactly the same as in the AP

algorithm, i.e., determined by the data-reuse factor L.

C. The Improved S-SM-AP (IS-SM-AP) algorithm

As we can see in the update equation of the S-SM-AP

algorithm, if a coefficient of the weight vector falls inside

the interval [−ǫ,+ǫ], then in the next update this coefficient

does not update since it is eliminated by the discard function.

On the other hand, the coefficients wi(k) inside the interval

[−ǫ,+ǫ] are close to zero and the best intuitive approximation

for them is zero (the center of the interval). Besides, making

these coefficients wi(k) equal to zero implies in a reduction

of computational complexity, because it reduces the number

of operations required to compute the output of the adaptive

filter y(k) = xT (k)w(k).2 For this purpose, we multiply w(k)
by Fǫ(w(k)), and obtain the Improved S-SM-AP (IS-SM-AP)

algorithm as follows

w(k + 1) = Fǫ(w(k))w(k) + q(k). (18)

IV. SIMULATIONS

Here, we have applied the IS-SM-AP, the SSM-AP [8],

the SM-PAPA [8], and the NLMS algorithms to identify

three unknown sparse systems of order 14.3 The first one

is an arbitrary sparse system wo, the second one is a block

sparse system w′
o, and the third one is a symmetric-block

sparse system w′′
o . The coefficients of these three systems are

presented in Table II. The input is a BPSK (binary phase-

shift keying) signal with variance σ2
x = 1. The signal-to-

noise ratio (SNR) is set to be 20 dB, i.e., the noise variance

is σ2
n = 0.01. The data-reuse factor is L = 1, the bound

on the estimation error is set to be γ =
√

5σ2
n, and the

2This additional reduction in the number of operations becomes more im-
portant as the filter order increases. For instance, in acoustic echo cancellation
systems, in which the adaptive filter has some thousands of coefficients [18],
[19], this simple strategy implies in significant computational savings.

3The results for the S-SM-AP algorithm are not shown here because they
are almost equal to the results of the IS-SM-AP algorithm, but the latter has
the advantage of requiring fewer computations.
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Table I
NUMBER OF OPERATIONS FOR SM-PAPA, SSM-AP, AND S-SM-AP ALGORITHMS

Algorithm Addition & Subtraction Multiplication Division

SM-PAPA
N2 + (L2 + 4L+ 5)N+ (L2 + 5L+ 7)N+

2N + (2L2 + 4L+ 4)
(2L3 + 5L2 + 7L+ 5) (2L3 + 6L2 + 9L+ 8)

SSM-AP
(L2 + 6L+ 7)N+ (L2 + 6L+ 9)N+

N + (2L2 + 4L+ 3)
(2L3 + 6L2 + 9L+ 7) (2L3 + 7L2 + 12L+ 11)

S-SM-AP
1

2
(L2 + 5L+ 6)N 1

2
(L2 + 5L+ 6)N

L2
1

2
(L3 + 4L2 + 11L+ 8) 1

2
(L3 + 6L2 + 11L+ 8)

Table II
THE COEFFICIENTS OF UNKNOWN SYSTEMS wo , w′

o
, AND w

′′

o

wo 24e-4 2e-8 -23e-4 -3e-7 5e-1 -1e-9 2e-2 1e-7 -5e-5 12e-6 1e-8 -5e-6 4e-6 -1e-5 -2e-3
w

′

o
2e-7 -21e-10 17e-8 21e-6 -3e-7 24e-4 5e-1 2e-2 33e-4 -2e-3 -5e-5 18e-9 -5e-6 28e-7 -19e-6

w
′′

o
2e-8 -1e-9 1e-7 -3e-7 -64e-3 2e-1 5e-1 2e-1 -64e-3 -5e-5 12e-6 1e-8 -5e-6 4e-6 -1e-5

threshold bound vector γ̄(k) is selected as the simple-choice

constraint vector [8] which is defined as γ0(k) = γe0(k)
|e0(k)|

and γi(k) = d(k − i) − wT (k)x(k − i), for i = 1, · · · , L.

The convergence factor of the NLMS algorithm is µ = 0.9.

The initial vector w(0) and the regularization factor are

10−3 × [1, · · · , 1]T and 10−12, respectively. The constant ǫ

in the IS-SM-AP algorithm is chosen as 2× 10−4; that is, on

average, 5 out of 15 coefficients (boldface coefficients in wo,

w′
o, and w′′

o shown in Table II) are updated at each iteration.

We have selected α = 5× 10−3, β = 5, and ε = 100 for the

SM-PAPA and the SSM-AP algorithms. The learning curves

are the results of averaging of the outcomes of 500 trials.

Figures 2, 3, and 4 depict the learning curves for the IS-SM-

AP, the SM-PAPA, the SSM-AP, and the NLMS algorithms to

identify the unknown systems wo, w′
o, and w′′

o , respectively.

In the case of wo and w′
o, the average number of updates

implemented by the IS-SM-AP, the SM-PAPA, and the SSM-

AP algorithms are 6.3%, 5.3%, and 8.9%, respectively. In the

case of w′′
o , the average number of updates performed by the

IS-SM-AP, the SM-PAPA, and the SSM-AP algorithms are

7.6%, 5.9%, and 20.5%, respectively.

In addition, we have applied all the aforementioned algo-

rithms, using the parameters that were already defined in the

previous paragraph, but changing the input signal model to an

autoregressive (AR) process in order to identify the unknown

system wo. The new input signal is generated as a first-

order AR process defined as x(k) = 0.95x(k − 1) + n(k).
In this case, the learning curves of the algorithms are shown

in Figure 5, and the average number of updates performed by

the IS-SM-AP, the SM-PAPA, and the SSM-AP algorithms are

8.4%, 7.7%, and 5.6%, respectively. Also, the overall number

of arithmetic operations required by the IS-SM-AP, the SM-

PAPA, and the SSM-AP algorithms are 41635, 110835, and

84396, respectively. That is, even in a scenario where the IS-

SM-AP realizes more updates than the competing algorithms,

the overall number of arithmetic operations it performs is

inferior due to its reduced complexity.

Regarding the MSE performance, in every scenario we

tested the IS-SM-AP algorithm performed as good as the other

state-of-the-art sparsity-aware algorithms, but our proposal has

the advantage of requiring fewer computations, since at each

iteration in which an update occurs only a subset (on average,
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Figure 2. The learning curves of the SM-PAPA, the SSM-AP, the IS-SM-AP,
and NLMS algorithms applied on wo.
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Figure 3. The learning curves of the SM-PAPA, the SSM-AP, the IS-SM-AP,
and NLMS algorithms applied on w

′

o
.

one third) of the coefficients was actually updated. In addition,

we observed that the MSE of the IS-SM-AP algorithm was

always very similar to the MSE obtained using the SM-PAPA.

Another interesting observation is that both the IS-SM-AP and

SM-PAPA algorithms worked better with BPSK input signal,

whereas the SSM-AP algorithm was better when a correlated

input signal was used.
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Figure 5. The learning curves of the SM-PAPA, the SSM-AP, the IS-SM-AP,
and NLMS algorithms applied on wo using an auto-regressive input signal.

V. CONCLUSIONS

In this paper, we have proposed the S-SM-AP and the

IS-SM-AP algorithms to take advantage of sparsity in the

signal models while attaining low computational complexity.

To reach this target, we have derived a simple update equation

which only updates the filter coefficients whose magnitudes

are larger than a pre-determined value. Also, this method is

jointly applied with the well-known set-membership approach

aiming at obtaining even lower computational complexity and

better convergence rate. The simulation results have shown

the excellent performance of the algorithm and lower com-

putational complexity compared to some other sparsity-aware

data-selective adaptive filters. Indeed, the proposed algorithm

performed as well as the SM-PAPA algorithm while requiring

fewer arithmetic operations (for the scenarios described in

Section IV, it entailed about 38% of the operations spent by

the SM-PAPA).

As for the future works, we intend to analyze the proposed

algorithms, derive their complex-valued version, adapt these

algorithms to tackle the problem of identifying time-varying

sparse systems, and compare the proposed algorithms with

algorithms following the Bayesian approach, such as the ones

introduced in [20]–[22].
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